Diel variability of the beam attenuation and backscattering coefficients in the northwestern Mediterranean Sea (BOUSSOLE site)

Malika Kheireddine¹,² and David Antoine¹,²,³

¹Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, UMR 7093, Laboratoire d’Océanographie de Villefranche, Observatoire Océanologique, Villefranche-sur-Mer, France, ²Centre National de la Recherche (CNRS), UMR 7093, Laboratoire d’Océanographie de Villefranche, Observatoire Océanologique, Villefranche-sur-Mer, France, ³Department of Imaging and Applied Physics, Remote Sensing and Satellite Research Group, Curtin University, Perth, Western Australia, Australia

Abstract

The diel variability of the particulate beam attenuation coefficient, \(c_p \), and of the particulate backscattering coefficient, \(b_{bp} \), were investigated during five seasonal cycles at an oceanic site in the northwestern Mediterranean Sea, covering contrasting physical and trophic situations. We observed a diel cycle in \(c_p \) and \(b_{bp} \), related to changes in phytoplankton properties (i.e., size and refractive index) induced by the accumulation of carbon within phytoplankton cells associated with photosynthetic processes, during the winter mixing of the water column, the development of the spring phytoplankton bloom, its decline, and during the summer oligotrophy. The relative amplitude of the \(c_p \) diel variability was much larger during the spring bloom (20–50%) than during other seasons (10–20%), whereas that of \(b_{bp} \) is steadily around 20% and does not show significant seasonal variability. The minimal \(c_p \) and \(b_{bp} \) occurred at sunrise and are synchronized, whereas maximum \(b_{bp} \) values are often reached 3–6 h before those for \(c_p \) (except during bloom conditions), which occur near sunset. These different amplitudes and timing are tentatively explained using Mie computations, which allow discerning the respective roles of changes in the particle size distribution and refractive index. The differences observed here in the diel cycles of \(c_p \) and \(b_{bp} \) show that they cannot be used interchangeably to determine the daily increase of the particle pool. This result has implications on the feasibility to determine net community production from the \(b_{bp} \) diel changes, when only \(b_{bp} \) is measured in situ or available from ocean color observations.

1. Introduction

Bio-optical relationships have long been established between inherent optical properties (IOPs) [in the sense of Preisendorfer, 1961] and biogeochemical parameters, such as the chlorophyll \(a \) concentration (Chl \(a \)) [Bricaud et al., 1995] and the particulate organic carbon (POC) [Gordon and Morel, 1983; Gardner et al., 1993; Loisel and Morel, 1998]. These relationships are used to derive information on biological and biogeochemical processes in the water column, from either in situ or satellite ocean color remote sensing observations [e.g., Claustre et al., 1999; Stramski et al., 1999]. They are established by pooling together data from different environments and are therefore global representations of the bio-optical variability. Most underlying processes, such as phytoplankton photosynthesis and particle growth and division, are associated to the daily light cycle. They accordingly exhibit a diel variability which is, however, not considered when building algorithms. This is partly responsible for the scatter in the relationships between IOPs and biogeochemical parameters.

Numerous studies were performed since the 1990s on the diel variability of IOPs in various oceanic regimes [Siegel et al., 1989; Claustre et al., 1999; Gernez et al., 2011]. They all used the particulate beam attenuation coefficient, \(c_p \), as a proxy for the load of particles whose size is between about 0.5 and 20 \(\mu m \) [Stramski and Kieler, 1991; Pak et al., 1988]. The particulate beam attenuation, \(c_p \), is given by the sum of particulate scattering and absorption coefficients.

They suggested that the \(c_p \) diel variability is essentially associated with planktonic responses to the daily light cycle coupled to the dynamics of the upper mixed layer [Siegel et al., 1989; Walsh et al., 1995; Stramski...
and Reynolds, 1993; Durand and Olson, 1998; Durand et al., 2002). This diel variability is often observed in situ and can be replicated in the laboratory (Claustre et al., 2002) (although usually for monocultures only). Interpreting this variability is difficult, however, because it depends on numerous parameters, such as phytoplankton concentration, composition, and physiological status, but also concentrations of detritus and small heterotrophs. Full knowledge of the diel variability of each component is usually inaccessible, which means that the causes of the variations in optical properties remain poorly understood. They may include:

1. The balance between daytime production and nighttime degradation of biogenic particles (phytoplankton, bacteria, small heterotrophs), including phytoplankton excretion, cell division, and cell mortality (grazing activity and viral lyses) (Cullen et al., 1992; Stramski and Reynolds, 1993). These biological responses depend on, e.g., temperature, nutrients availability, and light intensity (Falkowski et al., 1989; Falkowski and Kolber, 1995; Stramski et al., 2002; Nelson and Prézelin, 1990).

2. Changes in the particle size distribution.

3. Changes of refractive index driven by varying internal concentration of organic compounds (accumulation of intracellular carbon through photosynthesis).

Laboratory measurements have shown that (2) and (3) would be more important than changes in particle concentration in driving \(c_p \) diel variability (Stramski and Reynolds, 1993). The impact of detrital particles on \(c_p \) diel variability is limited because they do not exhibit significant diel changes (Durand and Olson, 1996).

Recently, Gernez et al. (2011) have shown that \(c_p \) diel cycles display significant seasonal variability, which may result from seasonal changes in nutrient concentrations, phytoplankton abundance, size distribution, and composition. They also used the diel variations of \(c_p \) to estimate the corresponding change in the particulate organic carbon (POC), from which the net community production (NCP) can be derived (see also Siegel et al., 1989; Claustre et al., 2008).

Studying \(c_p \) diel variability is often motivated by the prospect of deriving NCP from satellite ocean color remote sensing observations, in particular those from a geostationary orbit (Fishman et al., 2012; IOCCG, 2012). The particulate beam attenuation coefficient is not directly derivable from these observations, however. The IOP that is directly proportional to the ocean reflectance and can accordingly be derived from it is the particulate backscattering coefficient, \(b_{bp} \) (Lee et al., 2002; Maritorena et al., 2002; Morel et al., 2006), although deriving the beam attenuation coefficient from the reflectance has also been attempted (Roesler and Boss, 2003). As for \(c_p \), \(b_{bp} \) is, to first order, proportional to the particle load and, to second order, to the particle size distribution and to the refractive index, structure, and shape of particles.

Common belief would use existing relationships between both coefficients [e.g., Dall’Olmo et al., 2009; Westberry et al., 2010; Antoine et al., 2011] to derive the diel increase of \(c_p \) from that of \(b_{bp} \). For this to be valid, a tight relationship between both coefficients should be observed, as well as parallel diel changes of the two coefficients (at least the same amplitude for the diel change). How existing relationships match the first requirement is unclear. The second requirement is, to our knowledge, totally undocumented. Therefore we analyzed here a 5 year (2006–2010) high-frequency (every 15 min) time series of \(c_p \) and \(b_{bp} \) at the BOUSSOLE (BOUée pour l’acquisiSition d’une Série Optique à Long termE) site in the Mediterranean Sea [Antoine et al., 2006, 2008a, 2008b] with the main objective of comparing \(c_p \) and \(b_{bp} \) diel cycles under different environmental conditions (temperature, nutrients availability, and quantity and quality of light), in order to examine whether they could be interchangeably used to derive information on the daily increase of the particle pool. A second objective is to use theoretical Mie computations to evaluate whether particle size distribution or particle refractive index is more likely to drive the observed variability of \(c_p \) and \(b_{bp} \).

2. Materials and Methods

2.1. Description of the BOUSSOLE Site and Related Field Operations

Essential information about the site characteristics, the measurement platforms and the instrumentation is provided in Antoine et al. [2006, 2008a,b]. Therefore, only information relevant to the present work is presented here. The BOUSSOLE site is located in deep waters (2440 m) of the Ligurian Sea, one of the subbasins of the Western Mediterranean Sea (Figure 1). Seasonal variations in vertical mixing (typically to 400 m in winter, and sometimes to the bottom) and stratification during summer appear to drive the seasonal
changes in phytoplankton concentration and composition. Oligotrophic conditions prevail during summer when chlorophyll concentrations are below 0.1 mg m$^{-2}$ (with minima \sim0.05 mg m$^{-2}$). Higher concentrations, up to about 3–5 mg m$^{-2}$, occur during the spring bloom (February to March or April), and moderate concentrations (0.1–0.3 mg m$^{-2}$) the rest of the year. There is, accordingly, a large range of optical properties observed at this site [Antoine et al., 2006]. A buoy has been permanently deployed at the BOUSSOLE site since September 2003 and operates in a quasi-continuous mode, with data acquisition every 15 min night and day.

IOPs are collected at two depths in the water column (nominally 4 and 9 m). Two sister buoys equipped with the same sets of instruments are used, with rotation performed about every 6 months. The site is visited monthly for buoy servicing, during which 0–400 m casts are performed for acquisition of hydrological data (conductivity, temperature, and density (CTD)), complementary IOPs and AOPs, and water sampling for subsequent phytoplankton pigment analyses and particulate absorption measurements. The buoy data used in this study are the particulate beam attenuation coefficient, c_p, the particulate backscattering coefficient, b_{bp}, the water temperature, salinity, and density. We use the phytoplankton pigment concentrations and mixed layer depth from the monthly cruise observations.

2.2. Backscattering Coefficient

The volume scattering function at 140°, $\beta(140)$, was initially measured at BOUSSOLE using HOBI Laboratories (Hydro-Optics, Biology, and Instrumentation Laboratories) Hydrosat-2 backscattering meters installed at the lower measurement depth of the buoy (∼9 m) and equipped with filters at 442 and 550 nm. Starting in October 2007, HOBI Laboratories Hydrosat-4 backscattering meters were used, with bands at 442, 488, 550, and 620 nm. The instruments operate at 1 Hz, so that about 60 measurements are collected during each of the 1 min data collection sequence. The median of these 60 measurements is used to derive a representative value for $\beta(140)$. Dark current measurements are performed on site with a neoprene cap covering the instrument windows. Their average for a given 6 month deployment are subtracted from the raw $\beta(140)$ measurements. The $\beta(140)$ values are also corrected for attenuation along the measurement path (the $\sigma(\lambda)$ correction of Maffione and Dana [1997]) using the beam attenuation coefficient measured in parallel (see below) and the total absorption coefficient derived from inversion of the diffuse attenuation coefficient for downward irradiance (K_d) and the irradiance reflectance (R) [Morel et al., 2006, equations (12) and (13)]. The b_{bp} coefficient is derived from the corrected $\beta(140)$ as follows [Maffione and Dana, 1997; Boss and Pegau, 2001]:

$$b_{bp} = 2\pi J_0(\beta(140) - \beta_w(140)),$$

where $J_0 = 1.13$ (D. R. Dana and R. A. Maffione, unpublished manuscript, 2014) and where $\beta_w(140)$, the contribution of pure seawater scattering at 140°, is computed following Zhang et al. [2009] and Zhang and Hu [2009] using the temperature and salinity measured at the same depth with a Seabird SBE-37SI CTD sensor. All results shown in this paper use the b_{bp} value at 550 nm.

2.3. Beam Attenuation Coefficient

The transmittance (T_λ, %) at 660 nm is measured at BOUSSOLE at 4 and 9 m with 25 cm path length WET Laboratories (Western Environmental Technology Laboratories) C-Star transmissometers (acceptance angle
is 1.2\(^{3}\)). Instruments are factory calibrated with deionized, ultrafiltered, UV-screened water. The corresponding particulate beam attenuation coefficient, \(c_p\), is then calculated as:

\[
c_p(660) = \frac{1}{0.25} \ln \left(\frac{Tr}{100} \right)
\]

This assumes that absorption by colored dissolved organic matter (CDOM) is negligible at 660 nm [Bricaud et al., 1981].

The instrument bodies are covered with copper tape. Source and detector windows are equipped with copper rings and are cleaned about every 2 weeks by divers using soft brushes. These measures have proven efficient in preventing biofouling in most cases. Possible remaining corrupted data are identified from the comparison of data collected before and after cleaning operations. They are eliminated and not used here.

The same instruments are deployed on the monthly casts, and their measurements are used to correct the buoy transmissometer data for possible calibration drifts.

2.4. Particulate Backscattering Ratio

The particulate backscattering ratio, \(\tilde{b}_{bp}\), is defined as the ratio of the particle backscattering coefficient, \(b_{bp}\), to the particle total scattering coefficient, \(b_p\). Here a proxy to \(\tilde{b}_{bp}\) is derived from \(b_{bp}\) and \(c_p\) as follows:

\[
\tilde{b}_{bp}(550) = \frac{b_{bp}(550)}{c_p(660)}
\]

which assumes that \(c_p(660)\) is equal to the particle scattering coefficient at 660 nm, \(b_p(660)\) (negligible absorption), and that \(b_p\) is spectrally flat between 550 and 660 nm \((b_p(550) = b_p(660))\). The first assumption was validated by particulate absorption measurements using the quantitative filter pad technique, which shows an average \(a_p(660)\) contribution to \(c_p(660)\) of 2.5% only. The second assumption cannot be fully verified. The spectral dependence of the scattering coefficient is, however, typically within the \([0–1]\) range when Chl decreases from about 2 to 0.02 mg m\(^{-3}\) [e.g., Morel and Maritorena, 2001], which means only a 10% uncertainty when the 550 nm to 660 nm spectral range is considered.

2.5. Phytoplankton Pigments

Pigment sampling is performed during the BOUSSOLE cruises between the surface and a depth of 200 m. Seawater samples are collected from Niskin bottles and filtered through 25 mm Whatman GF/F (0.7 \(\mu\)m) and then stored in liquid nitrogen until algae pigment contents are measured in the laboratory using High Performance Liquid Chromatography (HPLC), following Ras et al. [2008]. The total chlorophyll \(a\) concentration (TChl) is computed as the sum of the concentrations of Chl \(a\), chlorophyllide \(a\), and divinyl Chl \(a\). The data obtained from samples at 5 and 10 m are used here. The relative proportions of picophytoplankton (size < 2 \(\mu\)m), nanophytoplankton (2–20 \(\mu\)m), and microphytoplankton (20–200 \(\mu\)m) are determined from the concentration of phytoplankton pigments that have a taxonomic significance and can be associated with a size class, as described in Uitz et al. [2006]. The continuous record of average daily chlorophyll concentration (Chl \(a\)) used here is generated by combining the chlorophyll concentration determined from HPLC and the chlorophyll product of ocean colors sensors as described in Antoine et al. [2008a,b].

2.6. Physical Parameters

The water salinity (S, psu), water temperature (\(T, ^{\circ}\)C), and the buoy depth (\(z_{buoy}, m\)) are measured with a Seabird SBE 37 SI CTD nominally installed at 9 m. The Sea Surface Temperature (SST, \(^{\circ}\)C) and the wind speed (\(U, m \text{ s}^{-1}\)) are measured hourly by a weather buoy moored two nautical miles away from BOUSSOLE, operated by the French weather forecast service, Meteo France. During the monthly cruises, vertical \(T\) and \(S\) profiles are performed using a Seabird SBE 911 plus CTD equipped with sensors for pressure (Digiquartz Paroscientific), temperature (SBE 3), and conductivity (SBE 4). After determination of the density, the mixed layer depth (\(Z_m\)) is computed using a density gradient criterion of 0.125 kg m\(^{-3}\).

2.7. Data Selection

Our goal is to characterize optical variations that result primarily from the ecosystem functioning. Unstable physical conditions may obscure the biologically driven diel cycle. Therefore, changes due to advection from, or mixing with, water masses of different optical properties have to be identified and eliminated from...
the analysis. Essential information about how the data selection is performed using T, S, and SST is provided in Gernez et al. [2011]. The initial data set includes 1322 measurement days from which a subset of 737 days has been selected (≈43% of data measurements have been eliminated). Therefore, the assumption is made that the diel cycles in cp and bbp obtained here are not significantly affected by changes in the mixed layer depth and essentially result from biological activity [Gernez et al., 2011].

2.8. Characterization of the Diel Variability in cp and bbp

The amplitude of the diel variation in cp (m$^{-1}$) and bbp (m$^{-1}$) are, respectively,

$$
\Delta cp = cp(2) - cp(1),
$$

(3)

$$
\Delta bbp = bbp(2) - bbp(1),
$$

(3')

where subscripts 1 and 2 indicate sunrise and sunset, respectively. The quantities derived through equations (3) and (3') do not necessarily represent the maximum change, because the maximum of cp, for instance, can be reached before sunset. An illustration is provided in Figure 2.

The relative variation from sunrise (in %) is defined by:

$$
\Delta cp(k) = 100 \left(\frac{cp(k)}{cp(1)} - 1 \right),
$$

(4)

$$
\Delta bbp(k) = 100 \left(\frac{bbp(k)}{bbp(1)} - 1 \right),
$$

(4')

where k is a fraction of a day. Fraction of the day are used, rather than hours, in order to allow comparison between days of varying photoperiod, whereby k is 0 at sunrise, 0.25 at noon, 0.5 at sunset, and 1 at the next sunrise.

The instantaneous specific rates of variation in optical properties which are related to particles (in day$^{-1}$) is computed as:

$$
rcp(t) = \left(\frac{1}{cp} \right) \frac{\delta cp}{\delta t},
$$

(5)

$$
rbbp(t) = \left(\frac{1}{bbp} \right) \frac{\delta bbp}{\delta t},
$$

(6)

where δcp or δbbp is the variation within the time between two consecutive measurements ($\delta t = 15$ min).

3. Results

The 5 year time series of daily averages of cp, bbp (550 nm), Chl a, and Zm is displayed in Figure 3. The seasonal variations of Zm show two distinct regimes, with a period of mixing from about December to February.
(Z_m ~ 400 m), a period of rapid shallowing of the mixed layer at the beginning of Spring (around March–April), and a period of stratification the rest of the year, i.e., during summer and of the first half of fall. The year 2006 was marked by an exceptional deep mixing in January–March (Z_m > 2000 m). The seasonal variations in mixing and stratification appear to drive the seasonal changes phytoplankton composition and concentration. High values occur during spring then decrease about 2 months later, after which concentrations remain low throughout the rest of the year. Generally, c_p and b_pp vary in parallel to TChl from February to June.

Seasonal changes in the phytoplankton size structure are observed at the BOUSSOLE site with larger cells (microphytoplankton) generally dominating during the end of winter and the beginning of the spring bloom (February–March), nanophytoplankton dominating from April to June, picophytoplankton dominating from August to December, and mixed communities during January–February (Figure 4). The dominance by picophytoplankton is not exceptional and has also been observed at the end of summer in the 1990s and in 2000 and 2001 at or near the BOUSSOLE site [Gernez et al., 2011]. Note that microphytoplankton dominate the biomass only during the spring bloom in 2006 while nanophytoplankton dominate during the spring bloom from 2007 to 2010. The switch between nano and microphytoplankton dominated blooms is also a feature of this area: microphytoplankton dominated during the bloom of years 2000 and 2005 [Organelli et al., 2013] while the bloom was dominated by nanophytoplankton during the other years.

In order to study the c_p and b_pp diel variability over time intervals where environmental conditions are reasonably stable, the data set has been segmented into four distinct situations: winter mixing, spring phytoplankton bloom, decline of the bloom, and summer and fall oligotrophy. This grouping is based on Z_m and TChl characteristics following Gernez et al. [2011]. Selection criteria and mean characteristics of these
The term “season” is used for the sake of simplicity, although the defined periods do not necessarily match the winter-spring-summer-fall calendar. The diel variability is now examined for each season, first as a few typical examples, and then as average cycles for each season.

Typical examples of diel cycles of \(cp \) and \(bbp \) are displayed in Figures 5a and 5b for the four seasons. The same data are shown in Figures 5c–5f in terms of relative daily changes \(\Delta cp \) and \(\Delta bbp \). A diel cycle appears to be a recurrent feature in the \(cp \) and \(bbp \) data at the BOUSSOLE site. Differences in the shape and amplitude of the diel changes are observed at different periods of the year, which indicates that the physical and trophic states have an effect on this variability of \(cp \) and \(bbp \). Whatever the season, the minimal \(cp \) and \(bbp \) occur around sunrise and are synchronized whereas maximum \(bbp \) are often reached 3–6 h before those for \(cp \), which occur just before sunset. The weakest daily changes \(\Delta cp \) and \(\Delta bbp \) are observed during the mixing period (Figure 5c), with values around or below 15%. The daily changes are slightly larger during the summer oligotrophy, with values between 15 and 20%. The largest changes are logically observed during the two phases of the bloom (i.e., increase and decline), with values up to 350% for \(\Delta cp \) and 180% for \(\Delta bbp \).

The daily averaged percent variation from sunrise, \(\Delta cp \), is shown for each season (Figures 6a–6d) and each year separately (Figures 7a–7d). A diel cycle clearly appears whatever the season and year. The timing is nearly the same at all seasons: \(\Delta cp \) starts increasing at dawn and reaches a maximum at or just before sunset (i.e., between 0.4 and 0.5 days), in agreement with previous observations performed in various oligotrophic and mesotrophic ecosystems [Siegel et al., 1989; Claustre et al., 1999, 2008; Gernez et al., 2011; Loisel et al., 2011]. The average amplitude is of 10–25% during the mixing, bloom decline, and oligotrophic periods, and of 25%–40% during the bloom. The standard deviation is generally of the same order of magnitude than the mean and is maximal during the bloom (Tables 2 and 3).

A diel cycle also appears for \(\Delta bbp \) whatever the season (Figures 6e–6h) and year (Figures 7e–7h). The maximum of \(\Delta bbp \) is, generally, reached earlier than the one for \(\Delta cp \), except during the bloom where maxima for

Table 1. Selection Criteria and Characteristics of the Four Seasons Differentiated From the BOUSSOLE Time Series Within Which Average Parameters of the \(cp \) and \(bbp \) Diel Cycles Are Determined

<table>
<thead>
<tr>
<th>Season</th>
<th>Physical Conditions</th>
<th>Chl a (mg m(^{-3}))</th>
<th>Average Size Particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>Mixing, Zm > 80 m</td>
<td>>0.6 (†)</td>
<td>Largest (8–50 μm)</td>
</tr>
<tr>
<td>Bloom</td>
<td>Stratification</td>
<td>>0.45 (†)</td>
<td>Largest and large (4–50 μm)</td>
</tr>
<tr>
<td>Decline</td>
<td>Stratified</td>
<td>>0.45 (stable)</td>
<td>Large and small (2–20 μm)</td>
</tr>
<tr>
<td>Oligotrophy</td>
<td>Stratified</td>
<td><0.45 (stable)</td>
<td>Smallest (0.2–2 μm)</td>
</tr>
</tbody>
</table>
the two coefficients nearly coincide. In order to quantify these time lags, we performed a cross correlation between \(c_p \) and \(b_{bp} \) diel cycles for each season, by shifting the \(c_p \) diel cycles toward morning or evening by up to 6 h. We estimated the correlation between the shifted cycles, \(r_{c_p b_{bp}} \), for each of the shifts (Figure 8).

The maximum correlation is achieved for a time lag of \(-3.75 \pm 1.75\) h during the mixing period (Figure 8a), \(-3 \pm 1\) h during the bloom decline (Figure 8c), and \(-3.5 \pm 1.5\) h during oligotrophy (Figure 8d). During bloom conditions, the maximum correlation is obtained when cycles are not shifted (Figure 8b). The amplitude of \(\Delta b_{bp} \) is between 5 and 38% according to the season. The spring bloom does not show significantly larger \(\Delta b_{bp} \) than for other seasons. Interannual variations are small for \(\Delta c_p \), except for the bloom and bloom decline conditions (Figures 6 and 7a–7d). They seem larger for \(\Delta b_{bp} \), which on the contrary does not show large seasonal changes. In contrast, the diel cycles of \(c_p \) and \(b_{bp} \) are the most regular during oligotrophy.

The rates of variation for \(c_p \) and \(b_{bp} \), \(r_{c_p} \) and \(r_{b_{bp}} \), emphasize differences in their diel cycles. The rates are displayed in Figures 6 and 7i–7l for \(c_p \) and Figures 6 and 7m–7p for \(b_{bp} \). The seasonal variation in the amplitude of \(c_p \) diel cycles is confirmed, with \(r_{c_p} \) within \(-0.6 \text{ d}^{-1} \) during the mixing, bloom decline, and the oligotrophic periods and up to \(-1.4 \text{ d}^{-1} \) during the bloom. The maximum \(r_{c_p} \) is slightly before noon. Then \(r_{c_p} \) decreases and becomes negative before sunset. Variations observed during the night are usually small during the bloom, bloom decline (except for 2007), and oligotrophic periods, with constant negative values until midnight and a slow recovery in the second half of the night.

The rate of variation for backscattering, \(r_{b_{bp}} \), varies between 0.3 and 2 \text{ d}^{-1} \) (Figures 6 and 7m–7p) and shows an increase during the first half of the morning, a maximum around noon (between 0.15–0.45 days),
and decreasing values during the afternoon. The r_{bbp} becomes negative $3–6$ h before sunset, which is consistent with the maximum of bbp being reached before sunset. Except during the phytoplankton bloom period, r_{bbp} decreases and becomes negative before sunset as for rcp. Nighttime variations are observed whatever the season.

To further highlight differences in daily cycles of cp and bbp, their ratio, i.e., the particulate backscattering ratio, Δbbp, is displayed in Figures 6 and 7q–7t. This ratio is sensitive to the refractive index of particles and their size distribution and is therefore an indicator of the bulk nature of the particulate matter [Twardowski et al., 2001; Boss et al., 2004]. A diel cycle clearly appears whatever the season and year. Δbbp starts decreasing at dawn and starts increasing, generally, at sunset. The timing is nearly the same at all seasons. The differences observed in maxima of cp and bbp, described previously, engender small differences in timing of maxima of Δbbp. Minima of Δbbp are observed around sunset ($±3–6$ h). The amplitude is around 10% during the mixing (except for 2006), decline, and oligotrophy periods, and around 20% during the phytoplankton bloom.
4. Discussion

4.1. Plausible Origins of the c_p and b_{bp} Diel Variability

Our data set does not include the observations that would allow a full understanding of the causes for the diel cycles of c_p and b_{bp} and for their differences in amplitude and timing. This would require a detailed knowledge of the composition and optical properties of suspended particulate matter, i.e., particles concentration, sizes, and refractive index, at the same frequency than the IOPs. This is not the situation when using the BOUSSOLE data set and is seldom available from field measurements. We can nevertheless examine whether our observations are consistent with current knowledge about which processes occur in the upper ocean that lead either to a decrease or an increase in the particle load, or to changes in particle characteristics (size and refractive index). The increase of c_p during the lighted portion of the day is usually explained by the accumulation of intracellular carbon concentration associated with photosynthetic processes, which

Figure 7. Average Δc_p, Δb_{bp}, r_{cp}, r_{bbp}, and Δb_{bp} (from top to bottom) during the four seasons as in Figure 6. Average cycles for each of the 5 years from 2006 to 2010 are superimposed in each figure (see line coding in Figure 7a). The x axis represents fractions of the day (i.e., sunset is 0.5 and midday is 0.25 whatever the season).
The daily amplitude of the \(\Delta c_p \) cycles (Figures 6 and 7a–7d) is larger during the bloom, i.e., when phytoplankton excretion, cell division, and cell mortality (grazing activity and viral lyses) [Durand et al., 2002]. At any time of day and night, losses of particulate matter occur in relation to respiration and phytoplankton excretion, cell division, and cell mortality (grazing activity and viral lyses) [Stramski and Reynolds, 1993; Cullen et al., 1992].

The daily amplitude of the \(c_p \) cycles (Figures 6 and 7a–7d) is larger during the bloom, i.e., when phytoplankton cells are neither light-limited nor nutrient-limited, as compared to winter mixing, bloom decline, and oligotrophy, during which phytoplankton cells are either light-limited or nutrient-limited or both. Reynolds et al. [1997] have shown that the amplitude of diel variability in phytoplankton absorption and attenuation decreases under nitrogen-limited growth. This is consistent with laboratory studies that have shown that light-limited or nutrient-limited phytoplankton have a low production rate of phytoplanktonic carbon via photosynthesis [Falkowski et al., 1989; Falkowski and Kolber, 1995; Stramski et al., 2002; Nelson and Prézelin, 1990]. There is an adjustment of the physiological activity according to the environmental conditions (quantity and quality of nutrients and light field), which tends to decrease the contribution of phytoplankton to the \(c_p \) daily changes. Bacteria, zooplankton (grazers), and detritus also contribute to the \(c_p \) variability. Because they likely do not vary at the diel scale [Durand and Olson, 1996], an increase in their proportion relative to phytoplankton will lower the daily percent amplitude of \(c_p \). The shape of the \(c_p \) diel cycle is different during the bloom of 2006 as compared to the other years. This might be related to differences in phytoplanktonic composition: in 2006, the bloom was dominated by microphytoplankton, whereas nanophytoplankton dominated from 2007 to 2010 (Figure 4). In contrast to \(c_p \) diel cycles, \(b_{bp} \) diel cycles are not marked by a significant seasonal variability. This would confirm that phytoplankton makes a smaller contribution to \(b_{bp} \) than to \(c_p \), so their seasonal changes poorly reflect in seasonal changes of \(\Delta b_{bp} \). Backscattering is more sensitive to the presence of submicrometer particles such as detrital particles or heterotrophic bacteria (according to Mie theory; Morel and Ahn [1991] and Stramski and Kieber [1991]), which all have little reason to show recurrent diel variability. Therefore, their steady presence damps the relative \(b_{bp} \) diel variability.

The differences observed in the timing of \(c_p \) and \(b_{bp} \) diel maxima might be related to an increase in the small sized phytoplankton cells induced by cell divisions at different times of the day. Vaulot and Marie [1999] have shown a synchronization of picoplankton population with a temporal gap of a few hours between Prochlorococcus, Synechococcus, and picoeukaryotes. Others have shown that Chlorophyceae and Euglenophyceae divide generally during the night whereas diatoms show peaks of division during daytime and at night [Sournia, 1974; Smayda, 1975; Williamson, 1980].

The decrease of the backscattering ratio during the day (Figures 6 and 7a–7d) suggests either a decrease of the refractive index or a decreasing proportion of small particles relatively to large particles or both. We assumed that the refractive index of the cell population is a real number (i.e., absorption is neglected at

<table>
<thead>
<tr>
<th>Table 2. Mean and Standard Deviation of the Daily Averaged (\Delta c_p) Shown in Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\Delta c_p) ± SD (%)</td>
</tr>
<tr>
<td>Mixing</td>
</tr>
<tr>
<td>Bloom</td>
</tr>
<tr>
<td>Collapse</td>
</tr>
<tr>
<td>Decline</td>
</tr>
<tr>
<td>Mean by year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Mean and Standard Deviation of the Daily Averaged (\Delta b_{bp}) Shown in Figure 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\Delta b_{bp}) ± SD (%)</td>
</tr>
<tr>
<td>Mixing</td>
</tr>
<tr>
<td>Bloom</td>
</tr>
<tr>
<td>Collapse</td>
</tr>
<tr>
<td>Decline</td>
</tr>
<tr>
<td>Mean by year</td>
</tr>
</tbody>
</table>
The first cause is unlikely, because the increase in cp and bbp rather indicates an increase in intracellular carbon concentration, which should lead to an increase in refractive index. The negative \(D_{bbp} \) results from changes in particles shape and size distribution, which suggests that the PSD is the main factor controlling the \(bbp \) diel cycles. This is consistent with Loisel et al. [2007], who showed that the slope of the PSD was the main factor controlling the \(bbp \) variability in case 1 waters whereas the refractive index had more importance in case 2 waters.

4.2. Interpreting Observed Daily Changes Through Mie Computations

In order to further evaluate plausible causes of the \(cp \) and \(bbp \) diel changes, theoretical computations have been performed using Mie theory, as driven by assumptions about how the various optically significant compartments evolve over a day. The goal is not to reproduce specific observations of any single day in our data set. We rather aim at exploring whether realistic assumptions on the daily changes in the particle size distribution (PSD) and refractive index \(n \) can lead to realistic average amplitudes and timing of the \(cp \) and \(bbp \) daily changes. The results of such computations are discussed by keeping in mind the known limitations of Mie theory, which is, strictly speaking, only valid for spherical and homogeneous particles. Therefore, it is used here as an imperfect yet useful tool for interpretation of our observations.

The strategy has been to establish as a starting point a population of particles representative of clear oligotrophic waters. Patterns of diel variability of \(n \), PSD, and abundance of phytoplankton cells are subsequently applied, from typical results of previous studies [Stramski and Reynolds, 1993; André et al., 1999; Durand et al., 2002; Durand and Olson, 1998; Claustre et al., 2002; Stramski et al., 1995; Vaulot et al., 1995; Liu et al., 1997].

![Figure 8](image-url). Cross correlation between \(cp \) and \(bbp \) diel cycles during the four seasons: (a) mixing, (b) bloom, (c) bloom decline, and (d) oligotrophy. The black dashed line represents the time lag at which maxima of \(cp \) and \(bbp \) diel cycles are best correlated. The gray dashed line indicates that \(r_{cp,bbp} = 0 \). The gray area represents the standard deviation (SD) of \(r_{cp,bbp} \). The average time lag (T) \((\pm SD)\) at which maxima are best correlated is indicated on each figure.
The input parameters for each category of particle are the numerical concentration, the size distributions (minimum, mean, and maximum diameters, and standard deviation), and the refractive index. Computations were performed for a single wavelength (660 nm), which is that of field cp measurements and where particle and CDOM absorption are negligible and consequently not modeled here. We included viruses, detritus, heterotrophic bacteria, picophytoplankton (0.2–2 μm), ultrananoplankton (2–8 μm), larger nanophytoplankton (8–20 μm), and microphytoplankton (>20 μm). Realistic concentrations of these components were chosen so that their cumulative size distribution roughly obeys an inverse fourth power law in cell diameter, from 0.03 to 100 μm. The real part of the refractive index varied between 1.05 and 1.08 according to the category of particles [Aas, 1996; Green et al., 2003] (Table 4). We assume that the imaginary part of the refractive index is neglected (i.e., absorption is negligible at 660 nm).

The cp and bbp coefficients were modeled as the sum of constant background components, cp0 and bbp0 (t = 0), and time-varying components, cp1 and bbp1. It was chosen to make cp1 and bbp1 depending only on the four phytoplankton populations (pico, ultranano, nano, and microphytoplankton), whereas all other components (virus, bacteria, and detritus) are kept constant over time. It is assumed that the cell abundance varied only because of the processes of cell division and mortality (grazing and cell mortality) [Stramski and Reynolds, 1993; Stramski et al., 1995; André et al., 1999; Durand and Olson, 1998; Claustre et al., 2002; Durand et al., 2002].

A simple model was used to reproduce the abundance of phytoplankton cells during a diel cycle, where the cell number, N(t), varies over a time step dt by dN(t), according to:

$$dN(t) = [\mu_d - g] N(t) \ dt,$$

where \(\mu_d\) and \(g\) are the instantaneous division and mortality rates during the period of division, respectively (see Figure 9). We choose, arbitrarily, to make \(\mu_d\) and \(g\) not to vary temporally during this period. The daily division and mortality rates corresponded to an average of results for different phytoplankton groups (pico, nano, or microphytoplankton) [André et al., 1999; Carpenter and Chang, 1988; Cullen et al., 1992; Liu et al., 1995, 1997; McDuff and

Table 4. Concentration, Particle Size Range, Refractive Index, and Growth and Mortality Rates of Each Group of Microorganisms Used in Mie Computations, Which Were All Performed for a Wavelength of 660 nm

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (m(^{-3}))</th>
<th>Size Range (μm)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses</td>
<td>7.0 × 10(^{16})</td>
<td>0.01–0.3</td>
<td>1.08</td>
</tr>
<tr>
<td>Bacteria</td>
<td>3.0 × 10(^{15})</td>
<td>0.1–1.2</td>
<td>1.075</td>
</tr>
<tr>
<td>Detritus</td>
<td>5.0 × 10(^{14})</td>
<td>0.02–4</td>
<td>1.08</td>
</tr>
<tr>
<td>Picophytoplankton</td>
<td>1.0 × 10(^{14})</td>
<td>0.2–2</td>
<td>1.05</td>
</tr>
<tr>
<td>Ultrananoplankton</td>
<td>5.0 × 10(^{12})</td>
<td>2–8</td>
<td>1.05</td>
</tr>
<tr>
<td>Nanophytoplankton</td>
<td>1.5 × 10(^{11})</td>
<td>8–20</td>
<td>1.05</td>
</tr>
<tr>
<td>Microphytoplankton</td>
<td>1.0 × 10(^{10})</td>
<td>20–100</td>
<td>1.05</td>
</tr>
</tbody>
</table>

\(^{a}\)Stramski and Kiefer [1991].

\(^{b}\)Stramski and Reynolds [1993], Stramski et al. [1995], Aas [1996], and Green et al. [2003].

Figure 9. An example of how cell abundance (here for nanophytoplankton) is made varying during a diel cycle (equation 7). Black dots are the initial and final cell numbers (N(t)i and N(t)f). The horizontal axis represents fractions of a normalized day (sunset is 0.5).
A typical example of imposed daily changes in n, mean size, and the particle abundance is shown in Figure 10. As a first step, modeled Δc_p and Δb_{bop} are presented in Figure 11 for three distinct simplified cases: (1) when a diel variation is applied only to the phytoplankton PSD (Figure 11a), (2) only to the refractive index of phytoplankton, n (Figure 11b), and (3), to both PSD and n (Figure 11c). The two first cases are unrealistic and only used to quantify the influence of the two parameters separately. They confirm that the main driving factor for c_p diel changes is the PSD, whereas changes in the refractive index have more influence on b_{bop} diel changes. With these simplistic cases, neither the amplitude nor the timing of the diel cycles is consistent with our observations, however. Getting realistic diel changes for the two coefficients, both in terms of amplitude and timing, requires daily changes in both PSD and n (Figure 11c). These results are obviously dependent on the choices we made on input parameters (e.g., Figure 10).

Similarly, Δc_p and Δb_{bop} have been modeled for different periods of cell division: (1) the cell division period of all phytoplankton groups occurs just a few hours before sunset and (2) the cell division period of picophytoplankton cells occurs at a different time, more precisely in mid-afternoon, in contrast to other phytoplankton groups. Results (not shown) reproduce well the differences observed in the timing of c_p and b_{bop} diel maxima as observed (Figure 8).

Table 5. Growth and Mortality Rates of Phytoplankton Groups for Different Environmental Conditions: Oligotrophy, Bloom, and Decline Period Used in Mie Computations [Calbet and Landry, 2004, and References Therein; Chen and Liu, 2010; Chen et al., 2013, and References Therein]

<table>
<thead>
<tr>
<th>Environmental Conditions</th>
<th>Oligotrophy</th>
<th>Bloom</th>
<th>Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picophytoplankton</td>
<td>$\mu_d = 0.8$</td>
<td>$\mu_d = 0.8$</td>
<td>$\mu_d = 0.8$</td>
</tr>
<tr>
<td></td>
<td>$g = 0.77$</td>
<td>$g = 0.65$</td>
<td>$g = 0.89$</td>
</tr>
<tr>
<td>Ultrananophytoplankton</td>
<td>$\mu_d = 0.55$</td>
<td>$\mu_d = 1$</td>
<td>$\mu_d = 0.55$</td>
</tr>
<tr>
<td></td>
<td>$g = 0.49$</td>
<td>$g = 0.49$</td>
<td>$g = 0.63$</td>
</tr>
<tr>
<td>Nanophytoplankton</td>
<td>$\mu_d = 0.50$</td>
<td>$\mu_d = 0.9$</td>
<td>$\mu_d = 0.50$</td>
</tr>
<tr>
<td></td>
<td>$g = 0.43$</td>
<td>$g = 0.43$</td>
<td>$g = 0.57$</td>
</tr>
<tr>
<td>Microphytoplankton</td>
<td>$\mu_d = 0.35$</td>
<td>$\mu_d = 0.42$</td>
<td>$\mu_d = 0.35$</td>
</tr>
<tr>
<td></td>
<td>$g = 0.29$</td>
<td>$g = 0.29$</td>
<td>$g = 0.42$</td>
</tr>
</tbody>
</table>

Figure 10. An example of the diel variations of cell properties and abundance imposed as input to Mie computations (see text). Figures 10a–10c are for picophytoplankton, (d–f) for ultrananophytoplankton, (g–i) for nanophytoplankton, and (j–l) for microphytoplankton during situations of oligotrophy. The hashed area is the cell division period and the shaded area is nighttime.
The model has been subsequently used to represent three of the seasons identified here, i.e., the bloom development and decline, and the summer oligotrophy (Table 5). The resulting \tilde{D}_{cp} and \tilde{D}_{bbp} are presented in Figures 12a–12c. They reproduce well the c_p and b_{bp} diel cycles and their seasonal differences as observed in our data set (Figures 5–7).

We caution against over interpretation of these results because of inevitable uncertainties associated with the assumptions of particle sphericity and homogeneity required in the Mie theory. These assumptions can influence the prediction of scattering, especially backscattering, compared with real arbitrarily shaped, nonuniform particles [e.g., Clavano et al., 2007; Zaneveld and Kitchen, 1995]. Despite these limitations, Mie theory offers a useful tool for the analysis of relative variations in scattering and backscattering coefficients. The assumptions inherent to the MIE theory do not introduce major errors in the estimation of the relative roles of the abundance, PSD and n in the backscattering properties. This is because changes in abundance, PSD and n, rather than variations in particulate shape or heterogeneity, are the first-order determinant of the backscattering coefficient. Furthermore, studies have shown that optical properties, including the backscattering coefficient, are primarily dependent on the particles size and weakly dependent on their shape, and therefore are very close to those properties for spherical particles [Asano and Sato, 1980; Ulloa et al., 1994].

The role of PDS changes on the c_p and b_{bp} diel variability could be further validated by using a method such that published by Briggs et al. [2013]. This method allows deriving particle size from high-frequency fluctuation of beam attenuation and backscattering coefficients and providing additional information given that c_p and b_{bp} are sensitive to different sized particles.

Figure 11. Average \tilde{D}_{cp} (black dots) and \tilde{D}_{bbp} (open circles) for a variation of either (a) size only or (b) refractive index only or (c) both. The hashed area is the cell division period and the shaded area is nighttime.

Figure 12. Average \tilde{D}_{cp} (black dots) and \tilde{D}_{bbp} (open circles) during situations of (a) oligotrophy, (b) bloom development, and (c) bloom decline. The hashed area is the cell division period and the shaded area is nighttime.
4.3. Using bbp Diel Changes to Infer cp Diel Changes?

Comparable cp and bbp diel changes would allow using them interchangeably to derive information on the daily increase of the particle pool, which is related to the net community production of the ecosystem [Siegel et al., 1989; Claustre et al., 2008; Gernez et al., 2011]. This possibility arises from the reasonably good correlation observed between cp and bbp [e.g., Dall’Olmo et al., 2009; Westberry et al., 2010; Antoine et al., 2011]. This suggests that when cp is not available (e.g., from inversion of ocean color remote sensing observations), deriving it from bbp might be indirectly feasible. The global relationships between cp and bbp made from an assemblage of punctual observations taken at various times of the day ignore the fact that cp and bbp do not vary in parallel over a day (Figures 5–7), with the maximum in bbp occurring earlier than the one in cp, for instance. The amplitude of the bbp diel changes is nearly insensitive to the trophic state, whereas that of cp is markedly different during bloom conditions. These observations show that using either field observations or satellite-derived values of bbp to indirectly infer cp through their relationship might be feasible with moderate accuracy. Deriving Δcp from Δbbp, however, is apparently not an avenue to determining NCP from either field measurements or satellite-derived bbp. Global bbp versus cp relationships [Dall’Olmo et al., 2009; Westberry et al., 2010; Antoine et al., 2011] are primarily driven by the particle load, whereas the composition and size distribution of particles and, as shown in this study, the different diel cycles are responsible for the scatter in the relationship between cp and bbp. The BOUSSOLE time series includes majority of oligotrophic conditions. We cannot, therefore, completely rule out the possibility to infer biogeochemical quantities from diel changes in bbp on the basis of this sole data set, in spite of its significant and unprecedented length. Major upwelling areas, as well as basin-scale phytoplankton blooms, e.g., the northern Atlantic spring bloom, are areas where the diel changes in bbp might be significant enough to allow determining NCP from the backscattering signal. Specific studies of the diel variability of IOPs are therefore needed in such areas. Whenever feasible, they should include measurements of the quantities that are necessary for a better understanding of the origins of the bbp variability, such as the particle size distribution and refractive index, or the composition of the living and detrital particle pools.

References

Acknowledgments
We thank D.G. Boxers and the two anonymous reviewers for their comments on the initial manuscript. Annick Bricaud, Hervé Claustre, and Vincenzo Vellucci are warmly thanked for their suggestions on early versions on this paper. The authors are grateful to the BOUSSOLE technical staff for their work in performing laboratory analyses, buoy deployments, and monthly cruises, and to the captains and crews of R/V Tethys-Il, Antea, and Europe. In particular, our thanks go to Emilie Diamond and Melek Golbol for their work in performing laboratory analyses, Vincenzo Vellucci and Mustapha Ouhssain for the HPLC pigment analyses, Vincenzo Vellucci and Bernard Gentili for the optical data and crew of R/V Tethys-Il, and Bernard Gentili for the optical data processing. This study is a contribution to the Bio-optics and Carbon Experiment (BIOCAREX) project, which is funded by the Agence Nationale de la Recherche (ANR, Paris), and to the BOUSSOLE project. Multiple organizations support BOUSSOLE and provide technical and logistic support: the European Space Agency (ESA), the Centre National d’Etudes Spatiales (CNES), the Centre National de la Recherche Scientifique (CNRS), the National Aeronautics and Space Administration of the USA (NASA), the Institut National des Sciences de l’Univers (INSU), the Université Pierre et Marie Curie (UPMC), and the Observatoire Océanologique de Villefranche sur Mer (O.OV). M.K. benefited from a grant provided by CNES and the region Provence Alpes Côte d’Azur (PACA). The data presented in this study are available on the BOUSSOLE website (http://www.obs-vfl.fr/Boussole).

Dall’Olmo, G., T. K. Westberry, M. J. Behrenfeld, E. Boss, and W. H. Slade (2009), Significant contribution of large particles to optical backscattering in the open ocean, Biogeoosciences, 6, 947–967.

