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Abstract

The major aim of this paper is the validation of SeaWiFS-derived chlorophyll-a concentration in the Mediterranean Sea. A data set

containing in situ chlorophyll-a profiles and optical measurements of in-water and above-water radiances was used to evaluate the

performances of several ocean color algorithms in the Mediterranean Sea. The analysis revealed a systematic overestimation of chlorophyll-a

concentration by National Aeronautics and Space Administration (NASA) global algorithms (OC2v4 and OC4v4). The error appears to be

correlated with chlorophyll-a concentration, by exhibiting marked differences at low values (C< 0.15 mg/m3). In particular at low

concentration, the bias observed for OC2v4 is about twice that observed for OC4v4. The same analysis made using the Gitelson et al. [J. Mar.

Syst. 9 (1996) 283.] Coastal Zone Color Scanner (CZCS) regional algorithm (GIT) revealed that this model underestimates the pigments

concentration but it does not exhibit a correlation between the error and the measures. On the other hand, when the NASA standard

algorithms are applied to remotely sensed data, the behavior appears reversed: the OC2v4 algorithm exhibits better estimates than OC4v4,

which is probably more affected by atmospheric correction problems. When applied to satellite data, the GIT algorithm performs better than

the NASA global algorithms, although the estimates are very poor in the high chlorophyll-a range. Two new Mediterranean algorithms are

then proposed by fitting our Mediterranean bio-optical data set with linear and OC2-like functional forms. The new algorithms perform well

when applied either to the bio-optical measurements or to satellite data. The different behavior of the same algorithm when applied to bio-

optical measurements or to remotely sensed data demonstrates that the atmospheric correction is still the main source of error in ocean color

data. Due to the relatively small number of available in situ data, the algorithms that we generated have to be considered very preliminary.

Discussion was carried out on the reasons of the global algorithm misfit, providing possible explanations and some preliminary result. The

influence of coccolithophores and of the yellow substance on the optical response of the Mediterranean waters is investigated, showing that

they can at least partially explain the systematic misfit. All the above shows that a region like the Mediterranean Sea requires an independent

treatment of the atmospheric and of the in-water bio-optical term to obtain reliable estimates of phytoplankton activity. D 2002 Elsevier

Science Inc. All rights reserved.

1. Introduction

The quantification of the spatial and time variability of

phytoplankton biomass and biological activity is among the

main scopes of ocean color observation missions. The

Coastal Zone Color Scanner (CZCS) mission produced

between 1978 and 1986 an invaluable new set of ocean

color data that substantially contributed to increase infor-

mation on a large variety of biological processes (Gregg &

Conkright, 2001; Harris, Feldman, & Griffiths, 1993;

Yentsch, 1993; Yoder, McClain, Feldman, & Esaias,

1993). Moreover, the CZCS mission demonstrated also the

potentiality of ocean color data to characterize the dynam-

ical features and the variability of the ocean circulation

pattern from mesoscale to large scale (see Abbott & Chel-

ton, 1991, for a review). The scientific success of the CZCS
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mission induced the space agencies to develop a new

generation of ocean color sensors. Among these, the

National Aeronautics and Space Administration (NASA)

launched in September 1997 the still operating SeaStar

satellite mounting on board SeaWiFS sensor and recently

the Terra Satellite with the MOderate Resolution Imaging

Spectroradiometer (MODIS) sensor; the European Space

Agency (ESA) developed the MEdium-Resolution Imaging

Spectrometer (MERIS) that will be launched at the begin-

ning of 2002. This new generation of sensors is character-

ized by more detailed spectral information, higher spectral

resolution, better calibration stability than the CZCS, and

provides for the first time a global ocean daily coverage

(Barnes, Pagano, & Salomonson, 1998; Doerffer, Sorensen,

& Aiken, 1999; Hooker, McClain, & Holmes, 1993;

McClain & Fargion, 1999; Rast & Bezy, 1999).

At the same time, a parallel effort in the improvement of

bio-optical and atmospheric correction algorithms has been

carried out (Carder, Chen, Lee, Hawes, & Kamykowski,

1999; Esaias et al., 1998; Gordon & Wang, 1994; Hooker &

McClain, 2000; McClain et al., 1992; Moore, Aiken, &

Lavender, 1999; O’Reilly et al., 2000; Wang, 2000).

One of the main aims of the SeaWiFS Project is to obtain

valid ocean color data of the world ocean with an uncer-

tainty of 5% in the determination of the water leaving

radiances in clear-water regions and an uncertainty within

F 35% in the estimation of the chlorophyll-a concentrations

over the range 0.05–50 mg/m3 for Case 1 waters (Hooker &

McClain, 2000).

Most of the bio-optical algorithms estimating chloro-

phyll-a or total pigment concentration (chlorophyll-

a + phaeopigments) from ocean radiance data have been

empirically derived. This is the case of the OC2 algorithm,

described by O’Reilly et al. (1998), and initially used by

NASA in the operational processing of SeaWiFS data. OC2

estimates chlorophyll-a concentration for Case 1 waters as

function of the ratio between remote sensing reflectances at

490 and 555 nm, using coefficients derived by a statistical

fit with SeaBASS (SeaWiFS Bio-optical Archive and Stor-

age System) data (see O’Reilly et al., 1998, for a descrip-

tion). In the same paper, they also proposed a four-band

algorithm (OC4). Subsequent analysis indicated that OC2

could be biased when applied to specific regions. Kahru and

Mitchell (1999) showed that OC2 overestimates chloro-

phyll-a at high concentrations in the California Current

area. For this reason, they proposed a new regional version

of the algorithm based on a fit with CalCOFI (California

Cooperative Oceanic Fisheries Investigation) data. In a

recent review paper, describing the main results of calibra-

tion and validation activity performed in the framework of

SeaWiFS Project, Hooker and McClain (2000) showed that

chlorophyll-a retrievals are within the accuracy goals stated

above for the Case 1 waters for most of the data. Never-

theless, the same authors found that for very low ( < 0.3 mg/

m3) and high ( > 3 mg/m3) chlorophyll-a concentrations, the

satellite overestimates the in situ-measured values.

Recently, in the framework of several research programs

(ENVISAT Cal-Val Team, 2000; Fargion & McClain, 2000)

specifically devoted to the calibration and validation of

ocean color sensors, a large amount of in situ measurements

have been collected. These new data increased their total

amount. Using this larger data set, O’Reilly et al. (2000)

proposed an updated version of the ocean chlorophyll-a

two- (OC2v4) and four-band (OC4v4) algorithms. They

suggested that the OC4v4 is expected to perform better

than OC2v4 when applied to satellite-derived water leaving

radiances both in oligotrophic and eutrophic conditions.

Subsequently, NASA adopted OC4v4 algorithm for the

global SeaWiFS processing.

Empirical regression-based algorithms obviously per-

form well when pigment composition of phytoplankton is

similar to that of the samples used to generate the algorithm.

Global algorithms (i.e., OC4v4) have to reflect average

pigment composition at global scale and, due to the sig-

nificant variation of pigment composition of specific phyto

assemblages in different regions of the oceans, they tend to

be overspread. Regional algorithms, fitted to local biological

characteristics generally perform better, and appear to be

very promising to reach the SeaWiFS project requirements

in particular areas.

Differences in the performance of regional and global

algorithms might be also enhanced by peculiarities in the

atmospheric term (Dierssen & Smith, 2000; Jorgensen,

1999; Kahru & Mitchell, 1999; Léon, Chazette, & Dulac,

1999), which indeed affect radiances and the result is

important in a misfit of the algorithm.

Since the Mediterranean Sea is one of the most relevant

regional seas in the world, we aimed to validate ocean color

algorithms in this area, with a particular attention to those

operationally used in the SeaWiFS data processing. More-

over, the Mediterranean exhibits a general oligotrophic

regime characterized by surface chlorophyll-a values usu-

ally less than 0.3 (Antoine, Morel, & André, 1995; Morel &

André, 1991), i.e., in the range in which the available

SeaWiFS algorithms have already revealed their limits

(Hooker & McClain, 2000). Ocean color data, if properly

validated, may result an invaluable information to under-

stand the functioning of the basin.

The paper is organized as follows: we first outline the

main features of the area and report of existing regional

algorithms (Section 2.1); then we describe the composition

of the data set and the methods used to collect and process it

(Sections 2.2 and 2.3). Satellite data processing and acquis-

ition methods are described in Section 2.4. The results of the

validation of selected empirical algorithms (Section 3.1) are

reported in Section 3.2. Section 3.3 describes a new set of

coefficients derived for a Mediterranean algorithm. In Sec-

tion 3.4, the algorithms tested in the previous section are

applied to satellite data and validated. In Section 4, we

discuss the results of the validation underlining open ques-

tions and possible answers. Finally, in the last section, we

summarize the results.
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2. Study area, data, and methods

2.1. Study area

The Mediterranean Sea is a mid-latitude, predominantly

oligotrophic and ultra-oligotrophic basin. However, higher

biomass may locally and seasonally occur in regions

affected by river runoff or by deep convection events

(Antoine et al., 1995). This basin is a good oceanographic

test area both for its complex ocean dynamics, which

mimics several basic processes of ocean functioning and

for its intensive anthropogenic pressure.

The Mediterranean area is strongly affected by industrial

emissions from the northern border and desert dust from the

south. Aerosols transported to the Mediterranean Sea may

be considered to consist of anthropogenic-rich ‘‘back-

ground’’ materials supplied continuously from Europe, upon

which sporadic pulses of Saharan crust-rich dust are super-

imposed. Schematically, the latter represent more than 90%

of the mass of particulate atmospheric deposition, though

they occur 10% of the time in the Mediterranean atmos-

phere, whereas the inverse figures apply to anthropogenic

aerosols (Gilman & Garrett, 1994). Despite high interannual

variability, the dust exported from Africa over the Medi-

terranean is higher in the eastern Mediterranean in spring

and spreads over the western Mediterranean in summer

(Guerzoni, Molinaroli, & Chester, 1997; Prospero, 1996).

The very peculiar aerosol composition makes more difficult

the use of routine remote sensing procedures for atmos-

pheric correction (Moulin, Dulac, et al., 1997; Moulin,

Guillard, Dulac, & Lambert, 1997).

Furthermore, previous study on CZCS data in this basin

(Antoine et al., 1995; Morel & André, 1991) showed that

the global ocean color bio-optical algorithm often results in

a poor estimate of the chlorophyll-a. All the consider-

ations above imply the need of a special validation effort

for the Mediterranean Sea and eventually the development

of new regional ocean color algorithms (Barale & Schlit-

tenhardt, 1993).

Gitelson, Karnieli, Goldman, Yacobi, and Mayo (1996)

showed that the CZCS global algorithm (Gordon & Morel,

1983) overestimates the observed pigment concentrations in

the eastern Mediterranean Sea. They proposed a region-

specific empirical algorithm to derive pigment concentra-

tions from CZCS images on the basis of a limited number of

measurements (21 stations), collected off the Israeli coast

(eastern Mediterranean) in June 1992. Even if this algorithm

can be considered a regional algorithm, its general applic-

ability to the Mediterranean Sea is limited by the small

number of data used for the regression and the limited area

and period (only 1 day) of the in situ measurements.

In view of the SeaWiFS ocean color algorithms’ vali-

dation in the Mediterranean Sea, a specific data set of bio-

optical and pigment concentration measurements has been

built during the period 1998–2000 in the framework of the

SYMPLEX (SYnoptic Mesoscale and PLankton EXperi-

ment) Project of the Italian Space Agency (ASI). This data

set is used in this paper for the validation of the most widely

used chlorophyll-a algorithms and to retrieve a first version

of a regional algorithm for the Mediterranean.

2.2. In situ chlorophyll-a data

In situ chlorophyll-a measurements were performed dur-

ing three cruises carried out in the Mediterranean Sea

through the years 1999–2000 on board the R/V Urania of

the National Research Council (CNR). The activity was

mostly sponsored by the ASI in the framework of its sup-

port to basic research aimed at validating remote observa-

tions of the Earth. The locations of the stations are reported

in Fig. 1a. Coastal stations were excluded from the data set

in order to avoid Case 2 water properties.

During each cruise, water samples were taken from

Niskin bottles mounted on a General Oceanics Rosette

equipped with an SBE 911 CTD profiler and a SeaTech

fluorometer. Subsamples to measure chlorophyll-a (C) and

phaeophytin-a (P) were filtered on board on GF/F filters

(low vacuum) and immediately deep-frozen. Pigment con-

centrations were subsequently determined at the Stazione

Zoologica di Napoli ‘‘A. Dohrn’’ (SZN) on 90% acetone

extracts within few weeks of the sampling using a SPEX

Fluorolog spectrofluorometer with an estimated coefficient

of variation for chlorophyll-a concentration of f 10%

(Neveux & Panouse, 1987).

For each cruise, we merged and linearly fitted spectro-

fluorometrically derived chlorophyll-a concentrations with

data acquired by the SeaTech in situ fluorometer. Therefore,

the data set consists of 582 chlorophyll-a profiles derived

from the calibrated fluorescence profiles. Additional data

were extracted from the data set of the Dynamique des Flux

de mAtière en MEDiterranée (DYFAMED) station located in

the Ligurian basin (Marty, Chiaverini, La Rosa, & Miquel,

1995 and Fig. 1a). The data are available on the World Wide

Web (http://www.obs-vlfr.fr/jgofs2/sodyf/home.htm).

For the stations where phaeophytin-a concentrations

were not available (e.g., DYFAMED), we estimated the

total concentration of chlorophyll-a + phaeopigments

(C +P), using a linear fit of C versus C +P, following an

approach very similar to O’Reilly et al. (1998). This fit was

based on 798 data points derived from the reported cruises

and 7 additional ones conducted in the Mediterranean

during the years 1995–2000 by the SZN group, and gave

the following equation:

C þ P ¼ 1:1635C þ 0:0072 ð2:1Þ

with a correlation coefficient of R2=.997.

Eq. (2.1) was then used to obtain total pigment concen-

tration profiles in those stations where only chlorophyll-a

was available.

The final data set covers a relatively wide range of con-

ditions in Case 1 waters of the Mediterranean Sea, spanning
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from oligotrophic (Sicily Channel and Ionian Sea) to mod-

erately eutrophic regimes (northwestern Mediterranean).

Chlorophyll-a concentrations vary between 0.03 and

2.75 mg/m3, though low values ( < 0.1 mg/m3) are definitely

more numerous (c 70%). Most of them were sampled

during the stratified season at sites exhibiting one, or seldom

two, deep chlorophyll maxima (DCM) located in the

55–85-m depth interval.

2.3. Optical measurements

We also conducted optical measurements at selected sites

during each cruise, totally 45 stations (see Fig. 1b). In-water

downwelling irradiance (Ed) and upwelling radiance (Lu)

profiles were taken in 32 stations using a Satlantic SPMR

(SeaWiFS Profiling Multichannel Radiometer) that operates

in 13 channels of the visible range (400, 412, 443, 470, 490,

Fig. 1. The Mediterranean Sea. (a) The location of in situ chlorophyll-a profiles are reported. Dots refer to SYMPLEX cruises. Triangle indicates the

DYFAMED location. (b) Location of concurrent bio-optical measurements and chlorophyll-a profiles. Stars indicate the SIMBAD measurements, dots the

SPMR Satlantic measurements.
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510, 532, 555, 590, 620, 665, 683, and 700 nm). The data

were acquired following the standard SeaWiFS protocols

(Mueller & Austin, 1995). The instrument had been cali-

brated at Satlantic just before each cruise. The above-water

measurements were made in the remaining 13 stations

(when SPMR were not available) using the SIMBAD radio-

meter operating at 443, 490, 560, 670, and 870 nm.

SIMBAD data were then processed at LOA (Laboratoire

d’Optique Atmospherique) of the University of Lille (Foug-

nie, Deschamps, Frouin, & Mitchell, 1998). All optical

measurements are hereafter used to derive the remote

sensing reflectance (Rrs) and water leaving radiance (Lw)

for algorithm validation.

Spectral in-water measurements of Ed and Lu have been

propagated up to the surface (z0� level) using attenuation

coefficients Kd and Ku, as estimated from the profiles. The

corresponding above-water Ed and Lu (z0 + level) were

calculated according to the following equations:

Luð0þÞ ¼ 0:54Luð0�Þ

Edð0þÞ ¼ 1=0:96Edð0�Þ

where 0.54 is a mean coefficient summarizing the effect of

internal reflection of the upwelling flux during transmission

through the interface and 0.96 accounts for the loss of

downwelling flux by reflection at the air–sea interface

(Austin, 1974; Gordon et al., 1988; Morel & Antoine,

1994; O’Reilly et al., 1998). Both coefficients assume low

solar zenith angle and calm sea surface, which were the

experimental conditions of our measurements.

Finally, we computed Rrs at each wavelength k, defined
as Rrs(k) = Lu(0

+ ,k)/Ed(0
+ ,k) and Lw(k) multiplying Rrs by

the mean extraterrestrial solar irradiance (Neckel & Labs,

1984) weighted by the spectral response of the relevant

sensor bands, as proposed by O’Reilly et al. (1998).

2.4. SeaWiFS satellite data processing

High-resolution picture transmission (HRPT) SeaWiFS

data have been acquired by the receiving station HROM at

the Istituto di Fisica dell’Atmosfera (IFA), Rome, Italy, and

transformed in Level 1A (L1A) standard NASA format. All

the SeaWiFS passages relative to the period of in situ

measurements were extracted from the IFA archive and

processed up to Level 2 (L2) standard NASA format to

obtain normalized water leaving radiance (Lwn) and remote

sensing reflectance (Rrs) maps for the five available visible

bands (412, 443, 490, 510, and 555 nm) using the SeaDAS

software v.4.0B (Baith, Lindsay, Fu, & McClain, 2001).

Siegel’s atmospheric correction algorithm has been applied

to L1A raw data (Siegel, Wang, Maritorena, & Robinson,

2000), which need a first estimate of chlorophyll-a concen-

tration to compute water leaving radiances. Consequently,

the L1A SeaWiFS data set was processed up to L2 for each

selected algorithm (see Section 3). We opportunely modified

the SeaDAS code to allow the application of the tested bio-

optical algorithms, which are not present in the used

SeaDAS software version.

Data have been remapped on a 1-km resolution equi-

rectangular projection in the regions of interest, using the

University of Miami Display Software Package (DSP).

Final maps have been flagged by applying all of the

24 masks provided by SeaDAS (Baith et al., 2001). This

implies that Saharan dust events have been implicitly

excluded by our analysis.

3. Results

3.1. Algorithm presentation

To evaluate the performance of some representative

empirical algorithms, we selected OC2v4 and OC4v4

(O’Reilly et al., 1998, 2000) as the NASA–SeaWiFS

operational algorithms and the regional algorithm proposed

by Gitelson et al. (1996) (hereafter GIT) as an example of a

local Mediterranean algorithm. The functional forms of

these algorithms are:

C ¼ 10ða0þa1Rþa2R
2þa3R

3Þ þ a4 ð3:1Þ

for the OC2v4,

C ¼ 10ða0þa1Rþa2R
2þa3R

3þa4R
4Þ ð3:2Þ

for the OC4v4, and

C ¼ a0ð10RÞa1 ð3:3Þ

for GIT.

In Eq. (3.1), R is the log10 of the ratio between remote

sensing reflectances, Rrs, measured at 490 and 555 nm. For

the OC4v4 (Eq. (3.2)), R is the log10 of ratio of Rrs measured

at 443 and 555, 490 and 555 nm, or 510 and 555 nm,

depending on its value (the maximum is chosen). In the case

of GIT, R is the log10 of ratio of the water leaving radiance,

Lw, at 440 and 550 nm, and C is the total pigment

concentration (chlorophyll-a + phaeopigments). The numer-

ical value of the coefficients can be found in Table 1.

Table 1

Algorithm coefficients of OC2v4 (O’Reilly et al., 1998), OC4v4 (O’Reilly et al., 2000), and GIT (Gitelson et al., 1996) used in Eqs. (3.1), (3.2), and (3.3)

Algorithm a0 a1 a2 a3 a4 R

OC2v4 0.319 � 2.336 0.879 � 0.135 � 0.071 log10(Rrs(490)/Rrs(555))

OC4v4 0.366 � 3.067 1.930 0.649 � 1.532 log10((Rrs443>Rrs(490)>Rrs(510))/Rrs(555)))

GIT 0.914 � 1.86 log10(Lwn(440)/Lwn(550))
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3.2. Algorithm validation

To test the performance of different algorithms in re-

trieving chlorophyll-a concentrations independently from

atmospheric correction errors, we used only situ optical

measurements (Rrs) and concurrent in situ chlorophyll-a

data. Bio-optical estimates of chlorophyll-a (Cmod) were

obtained by introducing the in situ Rrs measurements in the

three selected algorithms presented in the previous section.

For algorithms requiring data at wavelengths different from

those available from in situ optical measurements (i.e., GIT

and OC4v4 when applied to SIMBAD data), Rrs estimates

have been generated using the interpolation procedure

suggested by O’Reilly et al. (2000). The reliability of the

interpolation procedure has been also verified by selecting

Rrs values at 4 of the 13 bands available from SPMR

measurements and then computing the remaining 9 Rrs via

interpolation. The comparison between Rrs’s obtained by

interpolation and those measured by SPMR is quite good

and the error introduced by the interpolation appears to be

less than 10%. Fig. 2 shows as an example the results

obtained for the 510-nm band.

The validation procedure requires a comparison of algo-

rithm chlorophyll-a estimates with concurrent in situ chlor-

Fig. 2. The ratio of Rrs at 510 nm based on interpolated Rrs (Rint) to measured Rrs (R) versus chlorophyll-a concentration (CM).

Fig. 3. Scatter plot of optical weighted pigment (OWP) concentration versus CM. OWP is computed applying formula (6) in Clark (1997) to the chlorophyll-a

profiles and using as Kd(k,z) as the measure obtained by concurrent SPMR Satlantic profiles at 490 nm. CM is computed using Eq. (3.4) (see text).
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ophyll-a concentrations (CM). Following Gordon and Clark

(1980), we computed CM as:

CM ¼

Z Zpd

0

CðzÞexpð�2kzÞdz
Z Zpd

0

expð�2kzÞdz
ð3:4Þ

where k is the attenuation coefficient for the downwelling

PAR irradiance, Zpd = 1/k is the penetration depth and C(z)

can be either the chlorophyll-a or total pigment profile. Zpd
has been estimated as Zpd = Ze/4.6, with Ze being the

euphotic depth or the depth where PAR irradiance is

reduced at 1% of its surface value. Ze, in turn, has been

determined for each station by the recursive method pro-

posed by Morel and Berthon (1989) using calibrated fluo-

rescence profiles as input. CM refers to either C or C +P,

according to the algorithm used.

CM is very similar to the optically weighted pigment

(OWP) concentration that ‘‘should be an accurate represen-

tation of the pigment concentration measured by a remote

sensor viewing a stratified ocean’’ as reported by Clark

(1997). The difference resides in the way of computing it

and, in particular, in the definition of the lower limit for the

integral computation. Clark’s approach is based on the

knowledge of diffuse attenuation coefficients of downwel-

ling irradiance at various wavelengths (Kd,k), while the CM

requires the knowledge of Ze.

The presence of only above-water bio-optical measure-

ments in some of the data set stations prevents the applica-

Fig. 4. Algorithm validation using in situ bio-optical measurements and concurrent in situ chlorophyll-a data CM: (a) scatter plot of OC2v4 model values versus

CM; (b) scatter plot OC4v4 model values versus CM; (c) scatter plot of GIT model values versus CM. The 1:1 (center thick line), 1:2 (bottom thin line), and the

2:1 (top thin line) lines are also plotted.
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tion of Clark’s approach to the entire bio-optical data set.

When optical in-water profiles were available (i.e., Kd,k’s

were available), we performed a comparison between the

two approaches, which confirmed the validity of using CM

instead of OWP (Fig. 3).

The CM chlorophyll-a concentration collected in sta-

tions where bio-optical data are available ranges from

0.063 to 1.92 mg/m3, covering the wide range of con-

ditions of Case 1 waters of the Mediterranean Sea. Even if

the number of stations is not very large, the bio-optical

data set can be used to give indication of algorithm

performances for most of the optical/biochemical provinces

of the basin.

The results of the validation of the chlorophyll-a esti-

mates by the three selected algorithms are shown in Fig. 4.

The scatter plots clearly show that both NASA algorithms

overestimate in situ chlorophyll-a measurements, while GIT

Table 2

Application of the algorithm presented in Section 3.1 to the bio-optical in

situ measurements versus in situ chlorophyll-a measurements (CM):

statistical analysis

Algorithm %Emin h%Ei %Emax %S r2

OC2v4 � 192 � 73 8 49 .945

OC4v4 � 128 � 40 28 41 .944

GIT � 9 39 76 22 .930

The %E is obtained using Eq. (3.5). %Emin, %Emax, and h%Ei are the %E

minimum, maximum, and average of %E, respectively. %S is the standard

deviation of %E. r2 is the correlation coefficient.

Fig. 5. Percentage differences between in situ chlorophyll-a data CM and model values applied to bio-optical measurements in function of CM: (a) CM—OC2v4

versus CM; (b) CM—OC2v4 versus CM;(c) CM—GIT versus CM.
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algorithm underestimates CM. To quantify errors, statistical

parameters are summarized in Table 2 where percent error is

defined as:

%E ¼ 100
CM � Cmod

CM

� �
ð3:5Þ

with Cmod and CM being the modelled and measured

chlorophyll-a, respectively.

The squared correlation coefficient (r2) of the modelled

versus the in situ chlorophyll-a is nearly identical for

OC4v4 (.944) and OC2v4 (.945), while GIT exhibits

slightly lower r2 (.930). Both OC2v4 and OC4v4 over-

estimate in situ observations by 73% and 40%, respectively.

On the other hand, the GIT algorithm underestimates in situ

observations by 39%. We also calculated the maximum and

minimum percent deviation of the data from the model’s

estimates (%Emin and %Emax in Table 2), as well as the

standard deviation of the percent error (%S in Table 2). The

%Emax–%Emin range and %S give an idea of the spreading

of the data around the expected value (modelled chloro-

phyll-a). The %S values for the three algorithms range from

22% to 49% (Table 2). Moreover, it is noteworthy that in the

case of NASA standard algorithms (more evidently for

OC2v4), %E exhibits a correlation with CM. Fig. 5 shows

that the %E increases for low chlorophyll-a values with

larger error at CM lower than 0.15 mg/m3 for both OC4v4

and OC2v4. On the contrary, the GITs %E is quite constant

in the whole range of sampled CM (Fig. 5c).

Even if the application of OC4v4 improves the OC2v4

chlorophyll-a estimates in the Mediterranean Sea, the results

are still very poor. The GIT algorithm exhibits the best

statistical performance between the three tested algorithms.

However, the adoption of this algorithm as the standard

Mediterranean regional algorithm is limited by three basic

considerations. First, the 39% mean error we found is still

greater than the 35% required by NASA. Second, the 440-

and 550-nm bands used by GIT are no longer available in

SeaWiFS or in the next generation ocean color sensors (e.g.,

MODIS MERIS). Last, the limited range of temporal and

spatial coverage of the optical measurements used to

develop the GIT algorithm (‘‘21 locations were sampled

on 22nd July 1992, in the southeastern Mediterranean,’’

Gitelson et al., 1996) might prevent the applicability of this

algorithm when applied to a different season or sea region.

3.3. Algorithm adaptation

The algorithm validation (Section 3.2) suggests that a

regional algorithm is needed for the Mediterranean Sea.

Even if the bio-optical data set presented above consists of a

limited number of data (45 stations), they represent most of

the Mediterranean conditions ranging from oligotrophic to

moderately eutrophic regimes. It is then possible to use this

data set to develop a preliminary version of a Mediterranean

Table 3

Statistical results of the new Mediterranean algorithm presented in Section

3.3 to the bio-optical in situ measurements versus in situ chlorophyll-a

measurements (CM)

Algorithm %Emin h%Ei %Emax %S r2

L-DORMA � 64 0.8 49 27 .948

NL-DORMA � 62 1.8 52 27 .941

The %E is obtained using Eq. (3.5). %Emin, %Emax, and h%Ei are the %E

minimum, maximum, and average of %E, respectively. %S is the standard

deviation of %E. r2 is the correlation coefficient.

Fig. 6. Algorithm validation of the present paper algorithms using in situ bio-

optical measurements and concurrent in situ chlorophyll-a: (a) scatter plot

between L-DORMA model values versus CM (b) scatter plot NL-DORMA

versus concurrent in situ chlorophyll-a data CM. The 1:1 (center thick line),

1:2 (bottom thin line), and the 2:1 (top thin line) lines are also plotted.
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ocean color algorithm. The distribution of the chlorophyll-a

data versus band ratio suggests that both linear and poly-

nomial function can be used to develop an ad hoc algorithm.

The limited size of our data set suggests the use of a

simpler algorithm than OC4v4. In fact, to compute new

coefficients for an OC4-like algorithm we need that, after

the selection criterion, all the three possible band ratios

should be represented by a significant number of data points

in the data set used. Moreover, the application of the OC4v4

selection band ratio criterion to our data set results in a net

predominance of the R555
443 band ratio selection, while the

R555
510 is practically never selected.

Thus, we derived two new sets of coefficients for both

the linear and OC2 functional forms. The coefficients are

derived from regressions using our 45 data points.

The new polynomial equation NL-DORMA (NonLinear-

D’ORtenzio MArullo, Eq. (3.6)) is:

C ¼ 10ð0:217�2:728Rþ0:704R2þ0:297R3Þ � 0:035 ð3:6Þ

while the new linear equation L-DORMA (Linear-D’OR-

tenzio MArullo, Eq. (3.7)) is

C ¼ 1:49� 10ð�2:51RÞ ð3:7Þ

where R = log10(Rrs(490)/Rrs(555)).

In the polynomial fit case, the regression was constrained

to reproduce OC2v4-derived values for high chlorophyll-a

concentrations. The statistical results of the new regressions

are summarized in Table 3.

It is evident that the application of linear or polynomial

forms gives similar results once the coefficients are opti-

mized with respect to the data. In Fig. 6, the comparison

between the two new models and the in situ chlorophyll-a

data shows that the points are now distributed around the

line of best agreement with a percent error that rarely

exceeds 35%.

3.4. Satellite match-up analysis

The algorithm validation presented in the previous sec-

tions, however, supplies only partial information about the

performance of the algorithms when applied to satellite-

derived water leaving radiances. For this reason, we per-

formed a validation of the algorithms by comparing satellite

estimates with concurrent in situ chlorophyll-a observations.

The validation procedure was applied to the algorithm pre-

sented in Section 3.1, as well as to the algorithm developed

in Section 3.3. Moreover, we considered also the Neural

Network Algorithm (NNA) to complete the list of the algo-

rithms provided by NASA’s standard processing system

(Gross, Thiria, Frouin, & Mitchell, 2000).

The chlorophyll-a profiles that match in time and space

with concurrent satellite passages constitute the match-up

data set (Csitu). Note that Csitu and CM data sets only

partially overlap, because CM includes all those stations

where chlorophyll-a profiles and optical measurements were

present at the same time, while Csitu includes the stations

where chlorophyll-a measurements match in time and

location with a valid satellite pixel (match-up analysis). Csitu

Fig. 7. Geographical distribution of the satellite and in situ chlorophyll-a match-up data.
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has been calculated using the same formulation (Eq. (3.4))

used for CM.

The match-up file has been produced using a time window

of 8 h centered on the satellite pass time. Each satellite-

derived parameter has been averaged on 3� 3 pixels cen-

tered at the location of each station where chlorophyll-a

profiles were available, using only those pixels that passed all

the above-cited exclusion criteria (see Section 2.4). A thresh-

old of eight valid pixels was set to include the data points in

the match-up file.

After the selection procedure outlined above, we were

able to sort out 46 match-up points (including the six points

acquired by the DYFAMED, station) for our analysis (the

location of the match-up points is shown in Fig. 7). These

data cover a range of Csitu values from 0.05 to 1.14 mg/m3 of

chlorophyll-a concentration (0.06–1.34 mg/m3 of pigment

concentration) with a significant prevalence of values

typical of the Mediterranean oligotrophic regime (Csitu

< 0.1 mg/m3). All the data exceeding 1 mg/m3 (7 %) have

been collected in the northwest Mediterranean, during the

intense bloom occurring at the end of winter 2000. This area

is among the few where the Mediterranean Sea does not

display its characteristic oligotrophic regime. It is notewor-

thy that the number of locations where Csitu and CM overlap

is only five. In these five stations, optical measurements,

chlorophyll-a profiles, and satellite estimates are present at

the same time.

The results of the match-up analysis for the different

algorithms are summarized in Tables 4 and 5 and in Fig. 8,

essentially confirming the picture revealed by the analysis of

the in situ bio-optical data (see Fig. 4). In brief, the standard

NASA algorithms (OC2v2, OC4v4, and NNA) overestimate

Csitu, while the algorithms tuned over the Mediterranean Sea

(GIT, NL-DORMA, and L-DORMA) are definitively closer

to the in situ data. Table 4 contains information about the

percent error (%Esat) defined as:

%Esat ¼ 100
Csitu � Csat

Csitu

� �
ð3:8Þ

where Csat is the satellite estimate. The standard deviation of

the percent error for the whole data set (%Ssat) is also

reported. In addition, the same parameters have been esti-

mated separately for low (%Esat
� ) and high (%Esat

+ ) Csitu

concentrations (Csitu < 0.15 and Csitu>0.15 mg/m3) to evi-

dence the performance of selected algorithms in the oligo-

trophic regime predominant in most Mediterranean basins.

The high values of the mean %Esat (h%Esati) for the three
global scale algorithms is essentially due to the strong

overestimation in the low chlorophyll-a range. Nevertheless,

the performances in the high chlorophyll-a range are still

acceptable. Contrary to what was observed in the analysis of

the in situ bio-optical data, the OC2v4 chlorophyll-a esti-

mates agree better than the other two global algorithms

when applied to the satellite data. The NNA estimates are

definitely the worst.

The Mediterranean algorithms generally exhibit better

results: the h%Esati is definitively within 35% value defined

as one of the requirements of the SeaWiFS project (Hooker

& McClain, 2000). More in details, the Mediterranean linear

algorithms (GIT and L-DORMA) show a mean %Esat
�

(h%Esat
� i) lower than the mean %Esat

+ (h%Esat
+ i), signif-

ying that a better estimate occurs in the low chlorophyll-a

range. The GIT algorithm, in particular, exhibits an unac-

ceptable h%Esat
+ i of 40.3%. On the other hand, the mean

values of the absolute error (DC =Csitu�Csat) (Table 5),

relative to the two DORMA algorithms, are very close in

the low Csitu range, but are definitively better for the

NL-DORMA in the high Csitu region (see Table 5, under

Table 4

Application of the tested algorithm to satellite data versus in situ chlorophyll-

a measurements (Csitu): statistical analysis

Algorithm h%Esati h%Esat
� i h%Esat

+ i %Ssat %Ssat
� %Ssat

+ r2

OC2v4 � 84.9 � 96.2 � 9.8 69.4 66.9 25.0 .932

OC4v4 � 116.2 � 131.3 � 15.6 81.4 75.8 29.0 .928

NNA � 143.6 � 162.3 � 18.8 93.0 84.3 32.3 .869.

GIT 9.7 5.1 40.3 40.4 41.0 16.5 .932

NL-DORMA � 28.1 � 31.7 � 4.3 50.0 51.9 26.4 .916

L-DORMA � 9.5 � 14.7 25.2 37.0 36.2 20.6 .927

The %Esat is obtained using Eq. (3.8). h%Esati and %Ssat are the average and

the standard deviation of %Esat, respectively. h%Esat
� i and %Ssat

� are the

average and the standard deviation of %Esat for values of Csitu < 0.15 mg/

m3, respectively. h%Esat
+ i and %Ssat

+ are the average and the standard

deviation of %Esat for values of Csitu>0.15 mg/m3, respectively. r2 is the

correlation coefficient.

Table 5

Application of the tested algorithm to satellite data versus in situ chlorophyll-a measurements (Csitu): statistical analysis

Algorithm hDCi
(mg/m3)

hDC � i
(mg/m3)

hDC + i
(mg/m3)

S

(mg/m3)

S�

(mg/m3)

S +

(mg/m3)

r2

OC2v4 � 0.074 � 0.077 � 0.054 0.071 0.044 0.172 .932

OC4v4 � 0.101 � 0.105 � 0.081 0.072 0.041 0.183 .928

NNA � 0.134 � 0.133 � 0.143 0.110 0.058 0.287 .869

GIT 0.053 0.012 0.326 0.128 0.037 0.183 .932

NL-DORMA � 0.021 � 0.021 � 0.019 0.080 0.041 0.212 .916

L-DORMA 0.025 � 0.006 0.233 0.107 0.033 0.185 .927

The DC is defined as: DC=Csitu�Csat. hDCi and S are the arithmetic mean and the standard deviation of DC, respectively. hDC � i and S� are the arithmetic

mean and the standard deviation of DC for value of Csitu < 0.15 mg/m3. hDC + i and S + are the arithmetic mean and standard deviation of DC for value of

Csitu>0.15 mg/m3, respectively. r2 is the correlation coefficient.
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hDC + i). The difference in the sign of hDCi and h%Esati for
the L-DORMA algorithm (Tables 4 and 5) is due to the

different relative weight of the errors in the chlorophyll

estimates. The negative sign of the h%Esati demonstrates

that most of the percent error is due to the general under-

estimation of the algorithm, while the positive sign of hDCi
account for a higher weight of the overestimated values on

the mean error.

4. Discussion

All the results presented in the previous section raise the

question of why the global algorithms overestimate chlor-

ophyll-a concentration in the Mediterranean Sea.

A possible cause, which could bias the satellite reflectance

ratio as compared to the one expected from in situ pigment

concentrations, was discussed by Gitelson et al. (1996). They

proposed that a relatively higher abundance of coccolitho-

phores as compared to other groups, which might be typical

of oligotrophic open seas, would in fact distort the reflectance

ratios. It is noteworthy that this argument holds for relatively

low concentrations of coccolithophores, well below the

concentrations that make the global algorithms unfit and that

are flagged by the routine procedure. This point is quite

intriguing, because it is generally assumed that coccolitho-

phore chlorophyll-a should be underestimated owing of the

peculiar calcareous coverage of the cells (Gordon and Balch,

1999), with an enhanced reflectance in the visible part of the

spectrum (Tyrrell, Holligan, & Mobley, 1999).

Fig. 8. SeaWiFS chlorophyll-a estimates (Csat) validation against concurrent in situ chlorophyll-a data Csitu: (a) scatter plot of SeaWiFS estimate using OC2v4

model values versus CM; (b) scatter plot of SeaWiFS estimate using OC4v4 model values versus CM; (c) scatter plot of SeaWiFS estimate using Neural

Network model values versus CM; (d) scatter plot of SeaWiFS estimate using GIT model values versus CM; (e) scatter plot of SeaWiFS estimate using NL-

DORMA model values versus CM. (f) scatter plot of SeaWiFS estimate using L-DORMA model values versus CM. The 1:1 (center thick line), 1:2 (bottom thin

line), and the 2:1 (top thin line) lines are also plotted.
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The effect of the coccolithophores presence on the blue-

green water leaving radiance ratio had already been

described by Gordon and Balch (1999). They underlined

the change in the behavior of the Lwn(440)/Lwn(550) ratio

when coccolith concentration ranges between 0 and

200� 109 coccoliths/m3.

Then, to figure out whether the Gitelson hypothesis

holds, we performed an analysis similar to that by Gordon

and Balch (1999), but applied to the band ratio used in the

NL-DORMA and OC2 (i.e., 490/555 nm). We modelled the

Rrs using the Gordon et al. (1988) assumption (Eq. (4.1)):

RrsðkÞ ¼ 0:095
bbðkÞ

bbðkÞ þ aðkÞ

� �
0:54 ð4:1Þ

where bb is the total backscattering coefficient and a is the

total absorption coefficient.

Absorption coefficient has been calculated according to

the bio-optical model of Morel (1991) for Case 1 waters

(Eq. (4.2)):

a ¼ aw þ ap þ aCDOM ð4:2Þ

where the subscripts w, p, and CDOM refer to seawater,

particulate, and colored dissolved organic matter contribu-

tions to the total absorption coefficient, respectively. aw(k)
has been estimated according to Smith and Baker (1978),

aCDOM has been estimated assuming that CDOM concen-

tration covaries with chlorophyll-a, and with a spectral

dependence described by an exponential function with an

exponent of � 0.014 (Bricaud, Morel, & Prieur, 1981). ap
has been modelled following Morel (1991) using chloro-

phyll-a specific absorption coefficients proposed by

Sathyendranath and Platt (1988).

Following Tyrrell et al. (1999), we expressed bb as

(Eq. (4.3)):

bb ¼ bbw þ bbp þ bb;CaCO3
ð4:3Þ

where bbw is the backscattering coefficient of seawater,

computed as Morel’s (1974), bbp is the backscattering

coefficient of particulate, and bb,CaCO3
is the backscattering

coefficient due to the calcite (CaCO3) of coccoliths (for

details, see Eqs. (5), (6), and (8) in Tyrrell et al., 1999). We

used the values of the optical properties, composition, and

abundance of coccoliths given by Tyrrell et al. (1999) and

we also assumed that the coccoliths covering the cells have

the same optical properties of the detached ones. Simula-

tions showed a decrease in reflectance ratio as calcite

concentrations increased, confirming the results obtained

by Gordon and Balch (1999) for CZCS bands, providing a

cue for the overestimation of chlorophyll-a at low levels.

However, the derived reflectance ratio fits our experi-

mental bio-optical data (Fig. 9) for a CaCO3 concentration

of about 5 mg/m3. This amount of calcite would in fact

correspond to a coccolithophore concentration between

3� 104 and 2.5� 105 cells/dm3, which is almost one order

of magnitude higher than the concentration found by the

SZN group (4000 cells/dm3) in few stations of the Ionian

Sea (Rabitti, Civitarese, & Ribera d’Alcalà, 1994) or

reported by Robarts, Zohary, Waiser, and Ycobi (1996)

and Yacobi et al. (1995) in the Levantine Sea.

Thus, the observed systematic overestimate can only

partially be explained by the presence of coccolithophores.

A distortion in the reflectance ratio could also originate

from a high concentration of CDOM, which might be higher

in the Mediterranean Sea, a semi-enclosed basin, than in the

open ocean. We do not have CDOM concurrent data with

chlorophyll-a data, but measurements recently carried out in

open waters of Mediterranean Sea display very low con-

centrations of CDOM, always between 50 and 80 Amol/dm3

(Seritti et al., 2000).

Therefore, the lower value of the measured band ratio

is probably due to a phytoplankton community with op-

tical properties different from the average community on

which OC2v4 is based, similarly to what Sathyendranath,

Cota, Stuart, Maass, and Platt (2001) observed for the

Labrador Sea. This, in turn, stresses even more the need

for regional algorithms.

Furthermore, because satellite-derived geophysical quan-

tities, such as chlorophyll-a, are retrieved from measure-

ments taken above the atmosphere we also tried to quantify

the possible error induced by the atmospheric correction term.

The different behavior of the same algorithm when

applied to bio-optical measurements or to remotely sensed

data demonstrates that the atmospheric correction is still the

main source of error in ocean color data. In addition, the use

of the atmospheric correction Siegel algorithm increases the

Fig. 9. Variations in the Rrs(490)/Rrs(555) band ratio with chlorophyll-a

concentration. Squares represent the in situ bio-optical measurements and

the concurrent chlorophyll-a presented in Section 2.3. The solid line is the

semi-analytic radiance model presented in Section 4. The CaCO3

concentrations for the four lines are 0, 1, 5, and 50 mg/m3. The thick

line represents the lower CaCO3 concentration. The higher CaCO3

concentrations yield the ‘‘flatter’’ curves.
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dependency between the atmospheric correction procedure

and the preliminary estimate of chlorophyll-a and conse-

quently between the atmospheric correction and the used

bio-optical algorithm.

In general, the application of the algorithms to the

satellite data led to an increase in the satellite-derived

chlorophyll-a estimates. This effect is particularly evident

for OC4v4, which is probably more affected by the error in

the atmospheric correction, because of the multiple band

ratio option. The poor performance of this algorithm in the

satellite chlorophyll-a retrieval is evident from our analysis,

even if it exhibits better results than OC2v4 when applied to

in situ bio-optical data.

We mentioned before that we intentionally took out from

our analysis the observations with problematic aerosol

conditions, e.g., Saharan dust. Therefore, the optical proper-

ties exhibited by the Mediterranean atmosphere could

depend on aerosol load and composition (see Liberti et al.,

2001), which in turn could be related to the close connection

of the sea with the land.

5. Conclusions

The major aim of this paper is the validation of some

representative empirical algorithms to determine their per-

formance in retrieving chlorophyll-a concentration in the

Mediterranean Sea from SeaWiFS data. We selected three

algorithms: OC2v4 and OC4v4, as NASA’s operational

algorithms, and GIT (Gitelson et al., 1996), as an example

of a regional Mediterranean algorithm.

As anticipated in the Introduction, discrepancies, if any,

between SeaWiFS standard algorithms and Mediterranean

applications could rise either from failures in atmospheric

correction procedures or from peculiar bio-optical character-

istics of the Mediterranean waters. To avoid the problem

arising from the atmospheric correction procedure, a data set

of bio-optical measurements has been collected in the

Mediterranean Sea.

The analysis of bio-optical measurements revealed a

systematic overestimation of chlorophyll-a concentration

by NASA global algorithms. The error appears to be

correlated with chlorophyll-a concentration, by exhibiting

marked differences at low values (C < 0.15 mg/m3). In

particular at low concentration, the bias observed for

OC2v4 is about twice that observed for OC4v4.

On the other hand, when the NASA standard algorithms

are applied to remotely sensed data, the behavior appears

reversed: the OC2v4 algorithm exhibits better estimates than

OC4v4, which is probably more affected by atmospheric

correction problems.

Thus, on the basis of our data, we are not able to define

which NASA standard algorithm should be preferred for the

Mediterranean region.

On the other hand, the regional algorithm proposed by

Gitelson et al. (1996) for the southeastern Mediterranean

Sea overestimates the measured total pigment concentra-

tion when applied to the bio-optical data. However, it does

not exhibit a correlation between the error and the meas-

ures. When applied to satellite data, the GIT algorithm still

performs better than the NASA global algorithms, al-

though the estimates are very poor in the high chloro-

phyll-a range.

On the basis of these considerations, it appears evident

that the GIT algorithm performs best. However, the GIT

algorithm was tuned to retrieve total pigment concentration

rather than chlorophyll-a concentration. Moreover, this

algorithm uses the CZCS bands, some of which are not

available on SeaWiFS.

It is evident that the algorithms selected in this paper

were not able to give chlorophyll-a estimates for the

Mediterranean Sea that satisfied NASA requirements (i.e.,

35% error in chlorophyll-a concentration). For this reason,

we introduce two new algorithms, retrieved by fitting our

Mediterranean bio-optical data set with linear and OC2-like

functional forms. The new algorithms perform well when

applied either to the bio-optical measurements or to satellite

data. Due to the relatively small number of available in situ

data, the algorithms that we generated have to be considered

very preliminary and it is not even certain that a future

Mediterranean ocean color algorithm will be unique for the

whole basin. Nevertheless, the restricted range of chloro-

phyll-a concentrations in Mediterranean Case 1 waters,

which allowed to fit satisfactorily the data with a linear

regression, and the extendibility of the Gitelson algorithm

make us more confident that one single algorithm might

work, at least for basic quantities, such as chlorophyll-a and

derived properties.

A larger data set of bio-optical in situ measurements is

obviously necessary. But, because of the above-discussed

Mediterranean peculiarities, it is also necessary to build a

data set of atmospheric parameters to allow a refinement of

atmospheric correction algorithms.

SeaWiFS undoubtedly represents a dramatic improve-

ment in the observation of marine ecosystems from the

space, especially due to enhanced spatial and time coverage

and the forthcoming new generation of optical sensors will

further expand this capability.

We showed that a region like the Mediterranean Sea

requires an independent treatment of the atmospheric and

the in-water bio-optical term to obtain reliable estimates of

phytoplankton activity. This might also allow to test and to

better understand the contribution of different radiative

transfer terms in real environments.

Alternative semi-empirical or totally empirical approa-

ches, such as neural networks (Schiller & Doerffer, 1999),

genetic algorithms (Robilliard, Chami, Fonlupt, & Santer,

2000), and inverse methods (Hoge, Wright, Lyon, Swift, &

Yungel, 1999), would probably solve the problem of

decreasing retrieval errors, though without shedding light

of what are the determinant modulating factors that differ-

entiate one region from another.
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According to Antoine et al. (1995) and Morel and André

(1991), more than 70% of primary production in the

Mediterranean basin is due to the oligotrophic regions.

Because the relative error in the lower range of chloro-

phyll-a concentration is much higher, an overestimation of

pigment concentration would generate an error in the

primary production retrieval. Therefore, a finely tuned

algorithm is necessary for regional seas.
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Léon, J. F., Chazette, P., & Dulac, F. (1999). Retrieval and monitoring of

aerosol optical thickness over an urban area by spaceborne and ground-

based remote sensing. Applied Optics, 38, 6918–6926.

Liberti, G. L., D’Ortenzio, F., Santoleri, R., McClain, C., Wang, M., &

Volpe, G. (2001). Validation of the SeaWiFS aerosol products over

F. D’Ortenzio et al. / Remote Sensing of Environment 82 (2002) 79–94 93



the Mediterranean Sea. The EUMETSAT meteorological satellite data

users’ conference, 1–5 October 2001, Antalya, Turkey.

Marty, J. C., Chiaverini, J., La Rosa, J., & Miquel, J. C. (1995). Dyfamed,

une station d’observation de l’environnement marin en Méditerranée.

Met. Mar., 167, 33–36.

McClain, C. R., Esaias, W. E., Barnes, W., Guenther, B., Endres, D.,

Hooker, S., Mitchell, G., & Barnes, R. (1992). SeaWiFS calibration

and validation plan. NASA Technical Memorandum, 3.

McClain, C. R., & Fargion, G. S. (1999). SIMBIOS Project 1998 annual

report. NASA Technical Memorandum 1999-208645. Greenbelt, MD:

NASA Goddard Space Flight Center.

Moore, G. F., Aiken, J., & Lavender, S. J. (1999). The atmospheric correc-

tion of water color and the quantitative retrieval of suspended partic-

ulate matter in case II waters: application to MERIS. International

Journal of Remote Sensing, 20, 1713–1733.

Morel, A. (1974). Optical properties of pure water and sea water. In N. G.

Jerlov, & E. Steemann-Nielsen (Eds.), Optical aspects of oceanography

( pp. 1–24). London: Academic Press.

Morel, A. (1991). Light and marine photosynthesis: a spectral model with

geochemical and climatological implications. Progress in Oceanogra-

phy, 26, 263–306.
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