Increasing attention is paid to variations in the optical properties of the upper ocean at the diel scale. There are several possible explanations for this growing interest. First, the diel scale is fundamental for phytoplankton (Sournia 1974; Prézelin 1992), which, together with heterotrophic organisms and detritus, largely contribute to the optical properties of open-ocean case 1 waters. Generally, these variations are ignored in the interpretation of optical data sets. They could, however, explain a significant part of the observed variability in these data (Stramski and Reynolds 1993). Second, with the development of new observational platforms, in particular buoys equipped with optical sensors, it is becoming easier to document diel variations in optical properties. Indeed, these new platforms allow one to obtain quasicontinuous data sets from which variations over a scale continuum, including the diel scale, can be exemplified and studied (Stramski and Dickey 1992; Dickey et al. 1998; Kin-kade et al. 1999). Finally, some optical measurements permit the nonintrusive quantification of optically significant constituents such as the particulate (and/or colored dissolved) matter. Therefore, it is tempting to use (small) variations in optical properties for inferring biogeochemical processes (e.g., Siegel et al. 1989; Walsh et al. 1995; Claustre et al. 1999) at the diel scale. The prerequisite for such inversions is that measurements have sufficient accuracy to detect small changes and that they can be conducted at high frequency, two conditions which are about to be met with new types of optical platforms (Dickey et al. 1998).

Diel variations in the particle attenuation coefficient \([c_p (m^{-1})]\), equivalent, at 660 nm, to the particle scattering coefficient \([b_p (m^{-1})]\); Loisel and Morel 1998) have been documented using conventional transmissiometers in various open-ocean waters such as the Pacific (Siegel et al. 1989; Walsh et al. 1995; Claustre et al. 1999) and the Indian (Kin-kade et al. 1999) Oceans. The increase in \(c_p\) observed during the day is generally balanced by a decrease of similar amplitude at night (Siegel et al. 1989; Claustre et al. 1999). Thus, in most cases, the net change over the course of a day is nil. This daily increase in \(c_p\) has sometimes been used as a proxy of carbon fixation (e.g., Siegel et al. 1989; Claustre et al. 1999). Such an optically based estimation of primary production relies upon (1) the accurate estimation of the carbon-specific attenuation coefficient \((c_p^*, m^2 g C^{-1})\), which allows the conversion of attenuation measurements into their carbon content equivalents and upon (2) the critical assumption that \(c_p^*\) remains constant (or weakly variable) over the course of the day (Stramski and Reynolds 1993; Cullen and Lewis 1995), an assumption that, in some cases, can be challenged (Stramski et al. 1995).

In contrast to variations in scattering or attenuation coefficients, diel variations in the particle absorption coefficient \((a_p, m^{-1})\), if any, have never been documented in situ. Indeed, even in the phytoplankton pigments blue and red absorption bands, the absorption coefficient of particulate
material remains about one order of magnitude lower than the particle scattering or attenuation coefficients. Accurate particulate absorption measurements in open-ocean waters require concentrating particles and performing an in vitro analysis (e.g., Bricaud and Stramski 1990). Such a protocol precludes any time series with high temporal resolution to be recorded, from which diec variation in \(a_p \) could be documented and analyzed. Nevertheless, the recent development of in situ absorption meters like the AC9 from WET Labs Inc. might open the possibility to monitor variations in the spectral absorption coefficient at high frequency (e.g., Claustre et al. 2000), including at the diec scale.

In open-ocean oligotrophic areas, and especially in subtropical gyres, which are characterized by their clarity and stability, observations of a diec cycle for \(c_p \) seems to be the rule (e.g., Siegel et al. 1989; Claustre et al. 1999). In such waters, phytoplankton communities are dominated by photosynthetic picoplankton, which can be roughly subdivided in three main groups: Prochlorococcus, Synechococcus, and picoeukaryotes (e.g., Campbell and Vaulot 1993; Claustre and Marty 1995; Claustre et al. 1999). Among these three algal groups, the diec cycle in optical properties has been analyzed in detail on laboratory cultures of Synechococcus (Stramski et al. 1995) and of two picoeukaryotes: Nanochloris sp. (DuRand and Olson 1998) and Micromonas pusilla (DuRand et al. 2000). Within the intertropical oceanic belt, Prochlorococcus is often numerically the most abundant organism (Partensky et al. 1999). This single genus accounts for one-third to more than half of the total chlorophyll biomass (e.g., Goericke and Welschmeyer 1993). It is therefore timely to evaluate the capacity of Prochlorococcus to shape optical properties of the upper oceanic layers as well as in driving their diec variations.

Recently, a Prochlorococcus strain, PCC 9511, was made axenic (Rippka et al. 2000) and successfully grown under continuous culture conditions (Bruyant et al. 2001). This culture setup allows control of growth conditions and the physiological state, which impacts the biochemical composition and, ultimately, the optical properties of these cells (e.g., Stramski 1999). With this optimized culture system, the objective of the present study is triple. First, we investigate the optical properties (spectral absorption, attenuation, and scattering) of Prochlorococcus. Such properties have been already documented in the past, especially for absorption (Morel et al. 1993; Moore et al. 1995; Bricaud et al. 1999), but measurements were always conducted in nonaxenic batch cultures, which might be critical for attenuation and/or scattering measurements. The second main objective of this study is to quantify and analyze variations in Prochlorococcus optical properties, when cells are subjected to variations in irradiances that mimic those experienced by natural surface populations over 1 d. Finally, the results obtained on these cultures are extrapolated to the natural habitat by assessing the relative contribution of Prochlorococcus cells to the variations in optical properties of natural waters at the diec scale.

Materials and Methods

Culture conditions—Characteristics of the axenic strain Prochlorococcus marinus subsp. pastoris PCC 9511 used in this study as well as the recipe of the culture medium (PCR-S11) have been previously described (Rippka et al. 2000). Details on the turbidostat setup and illumination systems have been given elsewhere (Bruyant et al. 2001). Briefly, two replicate 11-liter turbidostat cultures of PCC 9511 were grown in 20-liter polycarbonate flasks, partially immersed in a thermoregulated bath at 21 ± 1°C set under a 12 h/12 h light/dark cycle (from 0600 to 1800). Such a design can be called a cyclostat (sensu Chisholm and Costello 1980). During the photoperiod, cells were illuminated by two symmetrical computer-controlled banks of light bulbs (OSRAM Dulux®L 55W daylight) providing a modulated irradiance varying in a sinusoidal way from 0 to 970 \(\mu \text{mol quanta m}^{-2} \text{s}^{-1} \) (see results). Over a full day, the irradiance received on average by the cells was ~300 \(\mu \text{mol quanta m}^{-2} \text{s}^{-1} \). Nutrients were never limiting. After 15 d of acclimation to these conditions, the two turbidostat cultures were sampled during four consecutive photocycles. During the night, sampling was made under low green illumination, which is not absorbed by Prochlorococcus cells (Morel et al. 1993). The two turbidostats were never sampled at the same frequency. Turbidostat 1 was sampled every 2 h (except at 0200, a time of minimum metabolic activity) for optics, flow cytometry, pigments, and particulate carbon measurements (the data from this study were essentially acquired on this turbidostat). Turbidostat 2 was sampled every 4 h for RNA and cytometric measurements.

Cell concentration and cell cycle were analyzed in both turbidostats using a FacSort flow cytometer (Becton Dickinson). The red fluorescence of PCC 9511 cells was generally too low under the high irradiance used in this experiment to completely resolve the cells from background noise. Immediately after sampling, cells were fixed for 15 min with 1% paraformaldehyde and 0.05% glutaraldehyde, then stained using the DNA dye SYBR-Green I before counting them on the basis of their green DNA fluorescence, as detailed elsewhere (Marie et al. 2000). Duplicates of each sample were snap-frozen in liquid nitrogen and reanalyzed later on. They were also used for analysis of DNA distribution from which the percentages of cells in the different phases of the cell cycle were computed (Marie et al. 2000). Cell density in the cyclostat was adjusted by modifying the flow rate of fresh medium into the culture after measuring cell concentration, generally at the time of dark-to-light transition (~0600 h).

The cell density evolved similarly in both replicate turbidostats (Fig. 1A), although the range of variation was greater in turbidostat 1 than in turbidostat 2. The observed temporal variability in cell density essentially resulted from the combination of highly synchronized division with variations in sampling volumes that modified the overall culture volume and, thus, the dilution rates (ratio of flow rate by the culture volume). As a consequence, the stabilization of PCC 9511 at a constant biomass level was uneasy. Nevertheless, although significant, the recorded variations in cell density
Fig. 1. Characterization of Prochlorococcus PCC 9511 cultures. (A) cell density in both replicate turbidostats. (B) DNA synthesis cycle in turbidostat 1. Growth rates are calculated over a 24-h interval (starting at 1800) according to Carpenter and Chang (1988), using a value of 4 h for time duration between peaks of S and G2 phases, value reported by Jacquet et al. (2001) from highly resolved temporal data. This value can be considered as maximal so that growth rates reported here likely correspond to a lower limit of the actual growth rate. (C) Estimation of the percentage contribution of bacteria to total cell (bacteria + Prochlorococcus) density and scattering in turbidostat 1. Note that PAR is plotted as a continuous (sinusoidal) line.

for turbidostat 1 (Fig. 1A) do not reflect variations in physiological state. Indeed, PCC 9511 DNA synthesis cycle was extremely reproducible over the four replicate days in turbidostat 1 (Fig. 1B). Subsequently, growth rates, derived from these DNA synthesis cycle data using the equation of Carpenter and Chang (1988), were also highly reproducible. The average growth rate determined here for PCC 9511 (μ = 0.69 ± 0.04 d⁻¹) is very close to the maximum growth rate determined under continuous irradiance for MED4 clone (μmax = 0.63 ± 0.06 d⁻¹, Moore et al. 1995). Similarly, observations based on gene expression measurements confirm that the Prochlorococcus cells were also physiologically in steady state throughout the 4-d experiment for replicate turbidostat 2 (Garczarek et al. 2001; Holtzendorff et al. 2001). Thus, the present results not only suggest that PCC 9511 physiological state was stable over the four cycles, but also that cells were growing under nutrient-replete conditions associated with optimal irradiances. Therefore, although optical and biochemical measurements were not replicated for both turbidostats, the reproducibility of these measurements over 4 d for turbidostat 1 appears sufficient to appropriately address the objectives of this study.

During the preconditioning phase (15 d), the culture was kept axenic. During the experiment, a slight bacterial contamination was detected. Using cytometric determination of bacteria numerical density, the bacterial contribution to the total (bacteria + PCC 9511) cell density was estimated. This contribution slightly increases, on average, from cycle to cycle (1%, 2%, 4.2%, 4.9%, for cycles 1, 2, 3, and 4, respectively) (Fig. 1C). If the forward side scatter (FSC) measured by cytometry is taken as a proxy of the scattering cross section of bacteria and PCC 9511 cells (e.g., DuRand and Olson 1998), the contribution of bacteria to scattering by prokaryotic biomass can also be estimated (Fig. 1C). This contribution gradually increases with time (3.7%, 6.3%, 11.7%, 12%, on average, for cycles 1, 2, 3, and 4). It will be shown later that the effect of bacterial contamination on bulk optical properties and their diel variations is not significant. This means that bacterial influence on optical measurements is not an issue in the present study.

Pigments and carbon—Triplicate 15-ml culture samples were filtered onto GF/F glass fiber filters and immediately stored in liquid nitrogen. High-performance liquid chromatography (HPLC) analysis was performed within 1 month of collection according to a slight modification of the protocol of Vidussi et al. (1996) described in Hooker et al. (2001). By use of these analytical conditions, and for an average cell density of ~10⁸ cell ml⁻¹, (Fig. 1), the pigment detection limit was 1.6 µg Dv–Chl a L⁻¹, 4.5 µg Dv–Chl b L⁻¹, 0.6 µg zeaxanthin L⁻¹, and 0.7 µg α carotene L⁻¹.

For carbon measurements, triplicate 50-ml culture samples were filtered onto GF/F filters previously cleaned in soxlet with dichloromethane. After filtration, samples were stored at 50°C awaiting analysis performed within 3 months after collection. Samples were analyzed using a LECO 900 carbon analyzer with ethylenediaminetetraacetic acid (EDTA) as a standard. Valid data are available for the first two and half cycles only.

Optical measurements—Spectral attenuation c(λ) and absorption a(λ) coefficients were measured in a 1-cm quartz cuvette using a dual-beam spectrophotometer (Perkin-Elmer Lambda 19) equipped with an integrating sphere and applying the optical setup described in Stramski et al. (2002). All measurements were performed in triplicate with a 1-nm resolution over the 190–800-nm spectral range and referenced against culture medium filtered onto a 0.2-µm syringe filter.
Table 1. Biochemical and optical characteristics in *Prochlorococcus* PCC 9511 grown in turbidostat under a daily light cycle.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average ± 1 SD</th>
<th>Min–Max†</th>
<th>Dawn value ± 1 SD‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dv-Chl a (fg cell⁻¹)</td>
<td>0.39 ± 0.06</td>
<td>0.24–0.50</td>
<td>—</td>
</tr>
<tr>
<td>Zeaxanthin (fg cell⁻¹)</td>
<td>0.51 ± 0.09</td>
<td>0.28–0.69</td>
<td>0.37 ± 0.08 (73%)</td>
</tr>
<tr>
<td>C (fg cell⁻¹)</td>
<td>27±6</td>
<td>17–38</td>
<td>19±4 (101%)</td>
</tr>
<tr>
<td>C: Dv-Chl a (g : g)</td>
<td>70±13</td>
<td>54–94</td>
<td>56±2 (93%)</td>
</tr>
<tr>
<td>Zeaxanthin: Dv-Chl a (g : g)</td>
<td>1.31±0.20</td>
<td>0.94–1.74</td>
<td>1.04±0.07 (52%)</td>
</tr>
<tr>
<td>a (440) (m² mg Dv-Chl a⁻¹)</td>
<td>0.0858±0.0119</td>
<td>0.0686–0.1131</td>
<td>0.0735±0.0058 (43%)</td>
</tr>
<tr>
<td>b (555) (m² mg Dv-Chl a⁻¹)</td>
<td>0.0186±0.0023</td>
<td>0.0143–0.0256</td>
<td></td>
</tr>
<tr>
<td>b (555) (10⁻¹⁴ m² cell⁻¹)</td>
<td>0.1139±0.0345</td>
<td>0.0590–0.2039</td>
<td>0.0682±0.0081 (154%)</td>
</tr>
<tr>
<td>σr (660) (10⁻¹⁴ m² cell⁻¹)</td>
<td>3.18±1.08</td>
<td>1.40–5.38</td>
<td>1.70±0.26 (184%)</td>
</tr>
<tr>
<td>c (660) (m² g C⁻¹)</td>
<td>1.04±0.15</td>
<td>0.77–1.32</td>
<td>0.81±0.05 (58%)</td>
</tr>
</tbody>
</table>

† Range of observed values.
‡ The number in parentheses refers to the percentage of increase in this parameter from dawn to dusk.

The cellular content of zeaxanthin (Fig. 3) always decreased, *c* (in m² g C⁻¹), is obtained by normalizing *c* (λ) by the carbon concentration.

Results and Discussion

Biomass and biochemical ratios—The pigmentation of *PCC 9511* grown at such high irradiance was very simple; besides the main pigments zeaxanthin and Dv–Chl *a*, only α-carotene was detected. Conversely to previous studies on MED4 (Moore et al. 1995; Cailliau et al. 1996; Bricaud et al. 1999), a closely related but not identical clone, the Dv–Chl *b*/Dv–Chl *a* ratio was, on average, below 0.06, which is an indication of adaptation to very high irradiances (Moore et al. 1995).

The average cellular Dv–Chl *a* content (0.39 ± 0.06 fg cell⁻¹) (Table 1) was significantly lower than the values reported by Cailliau et al. (1996) (1.5 fg Dv–Chl *a* cell⁻¹) for MED4 grown at a constant PAR (photosynthetically available radiation) of 56.7 μmol quanta m⁻² s⁻¹, but this value agrees with the large range of values reported by Morel et al. (1993) (~0.15–1.7 fg cell⁻¹) or Gibb et al. (2001) (0.22–1.83 fg cell⁻¹) for natural *Prochlorococcus* populations. The cellular zeaxanthin (0.51 ± 0.09 fg cell⁻¹) was nearly two times lower than that reported by Cailliau et al. (1996) and Moore et al. (1995) (1 fg zeaxanthin cell⁻¹). The same observation applies for carbon content (27 ± 6 fg C cell⁻¹, Table 1) when compared to the results of Cailliau et al. (1996) (49 fg C cell⁻¹). These low cellular contents likely result from adaptation to high irradiances (e.g., reduction of the pigment content) and also possibly of a reduction of cell size affecting the overall pool of organic material. Indeed Bricaud et al. (1999) have shown that cell size of MED4 grown under high light is smaller than size of cells grown under low light.

Over the first two cycles investigated, the daily fluctuations in cellular carbon were regular. The C content increased during the day and decreased during the night (Fig. 2) by a factor of ~2 (Table 1). Similarly, the C to Dv–Chl *a* ratio increased during the day and decreased just after the light-to-dark transition. These values are within the range reported for eukaryotic algae (e.g., Geider 1987).

The cellular content of zeaxanthin (Fig. 3) always de-
increased at night. During the diel period, this content increased stepwise (cycle 1) or regularly (cycles 2, 3, and 4). The cellular content in Dv–Chl a decreased during the day and the early part of the night (except for the third cycle where it remains stable) and increased rapidly over the few hours preceding sunrise. The zeaxanthin to Dv–Chl a ratio (hereafter named ZDR) exhibited a very regular oscillation with time; it increased during the day and decreased at night. The average value of ZDR is 1.3 ± 0.2, which is in agreement with the one that can be found for MED4 at PAR ≈ 300 μmol quanta m⁻² s⁻¹ (Moore et al. 1995; their figure 8B).

Besides the fairly regular daily oscillations in ZDR, a slight increase of the average value of ZDR over the four experiment days is seen in Fig. 3. This trend is estimated to be approximately 6% per day, which has to be compared to the ~50% variations (between minima and maxima) associated to the diel changes. Given that ZDR can, to some extent, be considered as an index of photoprotection, this trend may result from a slight change in irradiance within the culture vessel due to the progressive decrease in cell density with time (Fig. 1).

Absorption—The Dv–Chl a specific absorption coefficient at 676 nm, $a^*(676)$, did not show any daily variations (Fig. 4). Rather, $a^*(676)$ fluctuated around a central value of 0.019 ± 0.002 m² (mg Dv–Chl a)⁻¹ (Table 1), which is very close to the maximum theoretical value of this coefficient for pure Chl a [0.021 m² (mg Dv–Chl a)⁻¹, Bricaud et al. 1983]. This result means that pigment packaging had small or no effect on absorption at this wavelength and that Dv–Chl b did not contribute significantly to absorption at 676 nm.

By contrast, in the blue part of the spectrum, there was a very clear diel cycle in the Dv–Chl a specific absorption coefficient [e.g., $a^*(440)$, Fig. 4]. $a^*(440)$ consistently increased during the daily period (by a 35 to 55% factor according to the cycle considered) and decreased at night. Variations in the Chl-specific absorption of natural phytoplankton populations are governed by the “package” effect and/or the contribution of accessory pigments (Bricaud et al. 1995). It is likely that the package effect, which essentially depends upon the size and the internal pigment concentration (Morel and Bricaud 1981), was minimal in our

Fig. 3. Temporal variations of the pigment content of Prochlorococcus PCC 9511 cells grown in a cyclostat. (A) Zeaxanthin cell content. (B) Dv–Chl a cell content. (C) Zeaxanthin: Dv–Chl a ratio.

Fig. 4. Temporal variations of the absorption properties of Prochlorococcus PCC 9511 grown in a cyclostat. (A) Dv–Chl a specific absorption coefficient at 676 nm. (B) Dv–Chl a specific absorption coefficient at 440 nm.
study, even at this wavelength. Indeed, previous work has shown that, as a result of its tiny size, the absorption capacity in the blue domain of the MED4 clone is only reduced by less than 20% (Morel et al. 1993) or even 10% (Bricaud et al. 1999), comparatively to the absorption capacity of the same amount of pigments, if they were in solution. Furthermore, the low cellular Dv−Chl α content reported here as a result of photoacclimation (see above) would also result in low packaging. It is thus expected that pigment packaging, if any, was even lower in our study than the (already weak) package effect reported in the studies of Morel et al. (1993) and Bricaud et al. (1999). Therefore, the relatively large diel oscillations in a*(440) were most probably related to changes in the contribution by accessory pigments to absorption.

The diel variations in a*(440) (Fig. 4) were in phase with those in ZDR (Fig. 3), an observation that supports the control of specific absorption of Prochlorococcus by accessory pigment dynamics. This influence of accessory pigments can be quantified by partitioning the specific absorption a*(440) into a photosynthetic [a*PS(440)] and a nonphotosynthetic [a*NS(440)] contribution, in a similar way as performed by Babin et al. (1996) or Allali et al. (1997). In the present case, due to the very simple pigmentation of Prochlorococcus, the nonphotosynthetic pool was restricted to zeaxanthin, while both Dv−Chl α and α carotene were the only contributors to the photosynthetic pool [the excellent correlation between Dv−Chl α and α carotene pools (r² = 0.99; n = 44) is a strong indication that α carotene is a photosynthetic pigment]. On the basis of the concentration and of the specific absorption of those pigments at 440 nm (0.027 m² (mg Dv−Chl α)⁻¹; 0.039 m² (mg zeaxanthin)⁻¹; 0.043 m² (mg α carotene)⁻¹), the partial contribution (in percentage) of a*PS(440) and a*NS(440) can be estimated (Fig. 5a). On average, the percentage of a*PS(440) is only 40.8 ± 3.4%, which means that more than half of absorbed photons were not directed toward photosynthesis. The percentage of a*NS(440) was maximal at sunrise (45–48%), when ZDR was minimal, and minimum at sunset (35–38%), when ZDR was maximal.

These partial absorption contributions, when multiplied by a*(440), allow the determination of a*PS(440) and a*NS(440), respectively (Fig. 5B). Contrary to a*NS(440), a*PS(440) did not present any daily variations. Daily variations in Prochlorococcus a*PS(440) were thus exclusively governed by variations in a*NS(440). In other words, because a*NS(440) was here equivalent to Dv−Chl α specific absorption by zeaxanthin, variations in a*PS(440) were only driven by the relative variations in cell contents of zeaxanthin and Dv−Chl α.

The potential of Prochlorococcus for absorbing, per unit Dv−Chl α, energy usable for photosynthesis remained constant throughout the day [a*(476) and a*PS(440) kept unchanged]. Prochlorococcus grown under high irradiance (as in the upper layer of the surface ocean) was therefore likely unable to adjust its absorption capacity to light change at the daily scale (1) because this capacity was already nearly maximal (close to the theoretical maximum, see above) as the package effect was minimal and (2) because Prochlorococcus lacked a significant amount of accessory photosynthetic pigments (Dv−Chlb and α carotene remained minor in any case).

Besides pigment absorption bands in the blue (zeaxanthin and Dv−Chl α) and in the red (Dv−Chl α only) part of the spectrum (Fig. 6A), Prochlorococcus exhibited a pronounced absorption band in the UV domain, between 250 and 270 nm. This band exhibited very clear diel oscillations, either on a per cell or on a per Dv−Chl α basis (Fig. 7). The experimental setup of the culture (neon tubes, polycarbonate vessel within a glass aquarium) prevented Prochlorococcus biochemical properties from being influenced by UV radiation, so that the enhanced absorption in the 250–270-nm range was not a response to UV stress. We believe that this UV absorption band might characterize the plastoquinone pool (Falkowski and Raven 1997, their figure 9.12) or the presence of antioxidant compounds (Dunlap and Shick 1998), whose function is to counteract the presence of various damaging O₂ species as a result of excess excitation energy (O₂ reduction into O₂⁻ or H₂O₂ through PS I, singlet oxygen). It is worth noting that this UV absorption feature is typical of cyanobacteria that lack of xanthophyll cycle, the function of which in eukaryotic phytoplankton is, at least partly, to avoid the formation of this O₂ destructive species (photooxidation) (Demmig-Adams and Adams 1993).

Scattering—General variations: The spectral scattering cross section (Fig. 6B) regularly increased with decreasing wavelength, with an average λ⁻² dependency (for all the spectra), consistent with theoretical expectations for nonabsorbing particles of very small size (Morel and Bricaud

Fig. 5. Temporal variations of the absorption properties of Prochlorococcus PCC 9511 grown in a cyclostat. (A) Relative proportion of photosynthetic and nonphotosynthetic absorption. (B) Dv−Chl α specific absorption coefficient at 440 nm for photosynthetic and nonphotosynthetic pigments.

Claustre et al.
Superposed to this general trend, some slight spectral irregularities could be noticed in the vicinity of the pigment absorption bands (when enhancing the scale of Fig. 6B); these spectral irregularities were much less pronounced than those reported by Morel et al. (1993) for the MED4 strain grown at 7 μmol quanta m$^{-2}$ s$^{-1}$. Interestingly, absorption bands due to pigments were apparent in the spectral attenuation cross section (Fig. 6C), a feature seldom observed for phytoplankton.

The Dv–Chl a specific scattering coefficient at 555 nm, $b^*(555)$, had an average value of 0.114 m2 (mg Dv–Chl a)$^{-1}$, ~5 times greater than the value reported for MED4 by Morel et al. (1993), while the average scattering cross section, $\sigma_{s}(555)$, was nearly identical for both studies (0.04×10^{-14} μm2 cell$^{-1}$; Table 1). The higher $b^*(555)$ reported here essentially resulted from low cellular Dv–Chl a content as a consequence of PCC9511 adaptation to very high irradiances.

The cellular scattering cross section, $\sigma_{s}(555)$, as well as in the Dv–Chl a specific scattering cross section, $b^*(555)$, showed very similar trends (Fig. 8). Both quantities regularly increased during the daily period and decreased at night. These oscillations were in phase with oscillations of FSC of FSC of bacteria did not present any diel trend (data not shown), which confirms that observed diel variations were exclusively due to Prochlorococcus. Interestingly, $\sigma_{s}(555)$ and $b^*(555)$ variations were remarkably phased with diel changes in the attenuation coefficient, as reported by Claustre et al. (1999) in the euphotic layer of the South Pacific Gyre, where Prochlorococcus contributed to 60% of the attenuation by algal material. The amplitude of variation in $\sigma_{s}(555)$ or in $b^*(555)$ spanned a factor of ~3, which was much higher than the amplitude of variation in $a^*(440)$ (~1.5, Fig. 4). Therefore, compared to absorption, scattering properties of Prochlorococcus are much more influenced by diel variations in irradiance, corroborating a previous report on the diatom Thalassiosira pseudonana (Stramski and Reynolds 1993). As a consequence, the single
Fig. 8. Temporal variations of the scattering properties of Prochlorococcus PCC 9511 grown in a cyclostat. (A) Scattering cross section at 555 nm. (B) Dv–Chl a specific scattering coefficient at 555 nm.

scattering albedo (scattering-to-attenuation ratio) $\omega(\lambda)$ (Fig. 9 for $\lambda = 440, 676$ nm) and the scattering-to-absorption ratio (data not shown) exhibited very reproducible temporal trends similar to that of $\sigma_s(555)$ or $b^*(555)$. For example, over the four cycles, $\omega(440)$ varied between very stable limits, from 0.58 ± 0.01 (at sunrise) to 0.74 ± 0.01 (at sunset).

Biogeochemical implications: In the open ocean, and especially in subtropical gyres, the predominating phytoplanktonic species (Prochlorococcus, Synechococcus, and picoeukaryotes) are characterized by their very small size (Chisholm 1992). In these oligotrophic areas, very clear daily oscillations have been reported for the attenuation coefficient (e.g., Siegel et al. 1989; Claustre et al. 1999), as well as for individual cell properties (Vaulot et al. 1995; Vaulot and Marie 1999; DuRand and Olson 1996). Because subtropical gyres represent a very significant part of the world ocean, it is essential to address in detail the diel variations in the optical properties of their representative phytoplankton populations, for at least two reasons: (1) for evaluating the potential bias in using optical data sets when the “diel effect” (whose magnitude is linked to sampling time) is not taken into consideration (Stramski and Reynolds 1993) and (2) for the accurate retrieval of carbon standing stocks and even primary production from attenuation measurements (e.g., Siegel et al. 1989; Cullen and Lewis 1995; Claustre et al. 1999).

The present study of the diel optical properties in Prochlorococcus complements similar previous studies performed on other phytoplankton taxa a priori representative of oligotrophic conditions, namely Synechococcus sp. (Stramski

![Graph](image)

Table 2. Comparison of optical and biochemical properties of phytoplankton a priori representative of oligotrophic conditions and subjected to diel variations in irradiances. The first numbers refer to the dawn value; the number in parentheses refers to the percentage of increase in this parameter from dawn to dusk.

<table>
<thead>
<tr>
<th></th>
<th>Prochlorococcus PCC9511 (this study)</th>
<th>Synecococcus sp. WH8103 (Stramski et al. 1995)</th>
<th>Nannochloris sp. (DuRand and Olson 1998)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. PAR (μ mole quanta m$^{-2}$ s$^{-1}$)</td>
<td>970</td>
<td>300</td>
<td>1,500</td>
</tr>
<tr>
<td>Light type</td>
<td>Artificial, sinusoidal</td>
<td>Natural</td>
<td>Natural</td>
</tr>
<tr>
<td>Cell size (μm)</td>
<td>—</td>
<td>1.13 (17%)</td>
<td>2.67 (14%)</td>
</tr>
<tr>
<td>Cell volume (μm3)</td>
<td>—</td>
<td>0.76 (60%)</td>
<td>9.97 (48%)</td>
</tr>
<tr>
<td>C (fg cell$^{-1}$)</td>
<td>19 (101%)‡</td>
<td>205 (36%)</td>
<td>~2,000 (~100%)</td>
</tr>
<tr>
<td>σ_s (660) (10^{-4} m2 cell$^{-1}$)</td>
<td>1.7 (184%)§</td>
<td>55 (72%)</td>
<td>~600 (133%)</td>
</tr>
<tr>
<td>$c^*(660)$ (m2 gC$^{-1}$)</td>
<td>0.81 (58%)‡</td>
<td>2.5 (32%)</td>
<td>3.0 (17%)</td>
</tr>
</tbody>
</table>

‡ Two cycles are analyzed in the study of Stramski et al. (1995). However, we use here only results of the second cycle, for which light intensity was higher than for the first one.

§ Average of the first two cycles.

Average of the four cycles.
et al. 1995) and *Nannochloris* sp. (DuRand and Olson 1998). Table 2 summarizes, for some important cellular and optical properties, the differences between these three phytoplankters. Their carbon content spans over two orders of magnitude (~20, 200, 2,000 fg C cell⁻¹ for *Prochlorococcus*, *Synechococcus*, *Nannochloris*, respectively). The range of variation in the attenuation cross section at 660 nm (the wavelength at which most in situ measurements are done), \(\sigma(660) \), is even greater (0.017, 0.55, 6 \(\mu \)m² cell⁻¹ for *Prochlorococcus*, *Synechococcus*, *Nannochloris*, respectively).

The increase in \(\sigma(660) \) over the daily period is always greater than 70% of the morning value and even reaches ~180% for *Prochlorococcus* (this study). This result clearly illustrates that attenuation/scattering properties of the upper ocean might be very sensitive to the diel cycle, in particular (but not exclusively) if *Prochlorococcus* significantly contributes to the biomass and to the attenuation coefficient. Claustre et al. (1999) have estimated the contribution of *Prochlorococcus* attenuation to be 8% and 12% of particle attenuation in the euphotic zone of subequatorial (5°S, 150°W) and subtropical (16°, 150°W) stations of the South Pacific, respectively. In the equatorial Pacific, this contribution is in the range ~5–15% (DuRand and Olson 1996; Chung et al. 1998).

Accurate determinations of carbon stocks from attenuation measurements (generally at 660 nm) require that appropriate conversion factors are used. The carbon-specific attenuation coefficient \(\varepsilon(660) \), in \(m^2 g^{-1} \), is the parameter that is generally chosen for that purpose (e.g., Siegel et al. 1989; Cullen et al. 1992). Thanks to the low biomass of bacteria in the culture, *Prochlorococcus* \(\varepsilon(660) \) was here determined for the first time (Fig. 10). The average value, ~1 \(m^2 g^{-1} \), is ~3 times lower than estimates for *Synechococcus* and *Nannochloris* and even more if compared to the diatom *Thalassiosira pseudonana* (3.8 \(m^2 g^{-1} \)) (Stramski and Reynolds 1993). The value of \(\varepsilon(660) \) for *Prochlorococcus* is also lower than the corresponding estimation for particulate matter in the equatorial and subequatorial Pacific (2 \(m^2 g^{-1} \); Claustre et al. 1999) and lower still than similar estimations in the North Pacific (3.9 \(m^2 g^{-1} \); Siegel et al. 1989) or the North Atlantic (3.9–5.6 \(m^2 g^{-1} \); Walsh et al. 1995).

The actual attenuation capabilities of the living carbon of *Prochlorococcus* are at least three times lower than for other phytoplankton and two times lower than for bulk particles. It is also a confirmation of the previous study of Morel et al. (1993) demonstrating that, as a consequence of its low scattering efficiency \(Q_s(\lambda) \) (always <0.2) resulting from its tiny size, *Prochlorococcus* has a lower effect than other phytoplankton on the particle attenuation coefficient \(\varepsilon_p \). Therefore, even if *Prochlorococcus* is numerically the most abundant photosynthetic organism in the ocean (Partensky et al. 1999) and if its Dv–Chl \(a \) biomass often represents one-third or more of the total Chl \(a \) biomass (Goericke and Welschmeyer 1993b; Claustre and Marty 1995; Gibb et al. 2001), its impact on attenuation is expected to remain low.

Interestingly, the estimation of *Prochlorococcus* \(\varepsilon(660) \) allows us to estimate the carbon-specific attenuation for non-algal material (heterotrophs, but mostly detritus), an important and unknown pool that might contribute to 50%–80% of the particle attenuation (DuRand and Olson 1996; Chung et al. 1998; Claustre et al. 1999). For that calculation, we use the value of \(\varepsilon(660) \) for particulate matter (2 \(m^2 g^{-1} \)) obtained for a particle assemblage constituted by 61% non-algal material, 23% picoeukaryotes, 8% *Synechococcus*, and 8% *Prochlorococcus* (Claustre et al. 1999). The \(\varepsilon(660) \) values reported on Table 2 are assigned to these phytoplankton (*Nannochloris* is assumed to be representative of picoeukaryotes) so that \(\varepsilon(660) \) for non-algal material is estimated to ~1.5 \(m^2 g^{-1} \). This rather low value (comparatively to other phytoplankton larger than *Prochlorococcus*, Table 2) is an indication that the non-algal pool contributing to attenuation is likely dominated by small particles, with a low scattering efficiency.

Applying a generic \(\varepsilon(660) \) value to get carbon measurement from \(c(660) \) in any trophic situation is not valid. Indeed, the differences recorded in \(\varepsilon(660) \) for various phytoplankton species and non-algal material imply that \(\varepsilon(660) \) for bulk particulate material is dependent upon the proportion of algal and non-algal material as well as on the composition of the vegetal assemblage. This observation explains, at least partly, regional differences between the low estimation of \(\varepsilon(660) \) (2 \(m^2 g^{-1} \)) for the South Pacific (Claustre et al. 1999) compared to the higher \(\varepsilon(660) \) values reported for the North Pacific (Siegel et al. 1989) or North Atlantic (Walsh et al. 1995). Thus, (at least a few) carbon measurements on discrete samples are always necessary to establish regional \(c(660) \) versus carbon relationships for the purpose of inverting \(c(660) \) measurements into carbon concentration equivalents. Additionally, information on the composition of the particle assemblage, including phytoplankton, is needed for resolving regional variations in such relationships.

DuRand and Olson (1996) have shown that daily change in the attenuation by algal material accounts for most of the daily change recorded in \(c(660) \) (in other words, attenuation by non-algal material does not vary at the daily scale). Table 2 shows that, although \(\sigma(660) \) for representative phytoplankton species exhibits a considerable variation at the daily scale (~70–180% of the morning value), \(\varepsilon(660) \) varia-

Fig. 10. Temporal variations in the carbon-specific attenuation coefficient at 660 nm of *Prochlorococcus* PCC 9511 grown in a cyclostat.
tions remain restricted to a much narrower range (<5%) (see also Fig. 10). A prerequisite in using daily increase in c(660) as an estimation of primary production is the temporal stability of c*(660), or at least its weak variability (Stramski and Reynolds 1993; Cullen and Lewis 1995). The daily variability in c*(660) reported here is significant enough to prevent accurate primary production estimation from c(660) changes. In situations where only optical measurements are available (e.g., moored sensors), a constant value of c*(660), determined for particulate matter, can only be used as a first approximation to estimate primary production.

The measurement of optical properties at the cell level (e.g., forward scattering as measured by flow cytometry) allows us to infer, from theoretical calculation, cell attenuation cross sections (DuRand and Olson 1996). Because the variability of c*(660) among various phytoplankters is now partly documented (see Table 1), the diel variations in cell cross section might be converted into taxon-specific primary production. Knowing carbon fixation rate at the level of phytoplankton group is an important issue for marine biogeochemistry. To date, promising techniques for estimating taxon-specific primary production like pigment labeling (e.g., Goericke and Welschmeyer 1993) and other optical measurements near the sea surface: Some issues relevant to remote sensing. J. Geophys. Res. 100: 13,255–13,266. Cullen, J. J., and G. T. Barber. 1992. Photysynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the Equatorial Pacific. J. Geophys. Res. 97: 639–654. Demming-Adams, B., and W. W. Adams III. 1993. The xanthophyll cycle, p. 206–246. In A. Young and G. Britton [eds.], Carotenoids in photosynthesis. Chapman & Hall.

References

Gibb, S. W., D. G. Cummings, X. Irigoien, R. G. Barlow, R.

Received: 2 November 2001
Accepted: 23 June 2002
Amended: 5 July 2002