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[1] The influences of the directional variations and the polarization of the marine
reflectance on the retrieval of the inherent optical properties (IOP) (i.e., absorption,
scattering, and backscattering coefficients) of water constituents in coastal waters
are examined. First, an inversion algorithm based on artificial neural network (NN)
methodology is developed using a synthetic data set. The simulations were carried out
using a radiative transfer model that accounts for the polarization state of light in the
ocean. The simulated data included various directional effects of the particles. The data set
is also constrained by observations collected in optically representative coastal waters.
In particular, the relationships that exist between the IOP were taken into account, thus
making the data set realistic. The results showed that the total IOP were correctly retrieved
while the performance of the algorithm to derive the IOP of each water component
significantly degrades. However, the inclusion of the directional variations and the
polarization of the reflectance in the algorithm improved the accuracy of retrieval of
the scattering properties by 15%–60% and 65%–75%, respectively. The phytoplankton
and noncovarying particles (i.e., nonalgal particles) scattering and backscattering
coefficients were derived with an accuracy of 25% and 15% respectively. These results
demonstrate the potential of using the polarized signal to separate the total IOP into
contribution of biogenic and highly refractive particles in coastal waters. Therefore
the development of in situ instrumentation able to measure the polarization properties
of the particles is recommended.
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1. Introduction

[2] In the past, the emphasis of ocean color remote
sensing was focused on the derivation of the chlorophyll
concentration. This is partly because chlorophyll plays
a central role in conventional algorithms for primary
production or light attenuation coefficients. But, fundamen-
tally, water color is determined by the inherent optical
properties (IOP) of the water constituents (namely the
absorption, scattering, and backscattering coefficients),
and chlorophyll is just one of the active components that
determine the IOP. Previous studies, as outlined in the
report 3 of the International Ocean Colour Coordinating
Group (IOCCG) [International Ocean Colour Coordinating
Group (IOCCG), 2000], have emphasized the importance

of understanding and retrieving IOP in ocean color
remote sensing. IOP are at the center of satellite-measured
water leaving radiance and optically active marine com-
ponents (i.e., phytoplankton, minerals, and dissolved
matter). At the same time, variations of IOP are clear
indications of changes of water mass or marine compo-
nents. Therefore the inverse problem of ocean color,
which consists in determining the biogeochemical param-
eters from the upwelling radiance spectrum, can be
examined as a two-step process: the derivation of IOP
from the radiance and then biogeochemical parameters
from the IOP. Such an IOP-based inversion maximizes
the information gained from remote sensing. Recently,
good progress has been made in the inversion of IOP
from the upwelled radiance spectrum [Roesler and Perry,
1995; Lee et al., 1996a; Garver and Siegel, 1997; Hoge
and Lyon, 1996; Carder et al., 1999; Lee et al., 2002;
Maritorena et al., 2002; Roesler and Boss, 2003]. Never-
theless, significant efforts still need to be done when
dealing with optically complex waters such as those
encountered in coastal zones. Most of the current inver-
sions algorithms are based on the following relationship
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(equation (1)), which was derived from radiative transfer
calculations:

Rrsð0�Þ ¼ Luð0�Þ=Edð0�Þ ¼ g
bbtot

atot
ð1Þ

where Rrs(0�) is the subsurface remote sensing reflectance,
defined by the ratio of nadir-viewed upwelling radiance
Lu(0

�) (in W m�2 sr�1) to downwelling irradiance Ed(0
�)

(in W m�2) just beneath the sea surface, bbtot is the total
backscattering coefficient (in m�1), atot is the total absorp-
tion coefficient (in m�1), and g is a proportionality factor
(sr�1). The directional effects of radiative transfer (viewing
geometry and volume scattering function of particles) are
contained in the factor g. Previous studies [Morel and
Gentili, 1996; Morel et al., 2002] proposed a parameteri-
zation of g as a function of chlorophyll concentration in
open ocean waters. Such a parameterization is clearly not
applicable in coastal waters since IOP are not determined
by chlorophyll. Furthermore, constant values of g are often
employed in practice, regardless of the positions of the sun
and sensor. Recently, Albert and Mobley [2003] and Park
and Ruddick [2005] proposed a reflectance model able to
represent the bidirectional properties of waters for which
the backscatter coefficient is not determined entirely by
chlorophyll. Improved model accuracy was shown by the
inclusion of the bidirectionality. However, Zaneveld [1973]
previously showed that, in theory, the inversion of the
entire radiance distribution is necessary to obtain exact
values of IOP. Uncertainties in the derivation of IOP are
currently introduced anytime inversion formulas such as
equation (1) approximation are used. Therefore a signifi-
cant improvement of accuracies of the inversion necessi-
tates the consideration of directional effects such as the
multidirectionality of the reflectance, as evidenced by several
studies on the bidirectional reflectance [Morel and Gentili,
1996; Albert and Mobley, 2003; Park and Ruddick, 2005].
Currently, the measurement of the radiance is practically
carried out in one direction (mainly at nadir when dealing
with in situ measurements) in remote sensing. Thus, the
directional variations of the Rrs (i.e., multidirectional
reflectance) are still ignored in inversion algorithms.
[3] Another piece of physical information that is neg-

lected in the current inversion algorithms is the contribution
of the polarization state of light. The radiative transfer models
that are currently used to express the reflectance as a
function of IOP (such as Hydrolight [Mobley, 1989],
Coupled Discrete Ordinate Radiative Transfer (CDISORT)
[Jin and Stamnes, 1994], or Monte Carlo [Morel and
Gentili, 1996]) solves the scalar radiative transfer equation
and, thus, they do not account for the polarization of the
radiation. Yet Chami et al. [2001], who investigated the
influence of the marine particles on both the directional
structure and the polarization state of light, showed that the
polarized reflectance is strongly affected by the hydrosols
in coastal waters.
[4] In this paper, we investigate the influence of the

directional structure and the polarization of the remote
sensing reflectance on the performance of an inversion
algorithm. Our major goal is thus to quantify the improve-

ment in accuracy of the IOP retrieval in coastal waters when
the directional variations and the polarization of the reflec-
tance are accounted for. First, we describe the inversion
algorithm and the simulation conditions used to generate a
synthetic data set. The sensitivity of the IOP retrieval to the
directionality and polarization of the oceanic radiation is
then presented and discussed.

2. Inversion Algorithm

[5] The algorithm which is applied in this study is a
neural network (NN) inversion procedure. The NN proce-
dure was selected because of its capability to invert direc-
tional remote sensing reflectance directly into absorption
and scattering coefficients of different constituents as present
in coastal waters [Schiller and Doerffer, 2005]. Neural
networks consist of a large number of ‘‘neurons’’, i.e.,
simple linear or nonlinear computing elements, intercon-
nected in complex ways and often organized into layers.
Here a feedforward multilayer perceptron was developed. In
this type of NN, the data flow through the network in one
direction from an input layer to an output layer through at
least one hidden layer. The function of the hidden layer is to
enable the network to extract higher order statistics, which is
particularly valuable when the size of the input layer is large.
The complexity of feedforward multilayer perceptrons can
vary according to their topologies (i.e., the number of hidden
layers and the number of neurons in each hidden layer). The
input to each layer is the weighted sum of the outputs of the
previous layer. This sum is passed through a nonlinear
activation function to generate the output. The function that
was adopted here is the sigmoid function, which is by far the
most common form of activation function used in the
construction of NNs for solving nonlinear regression tasks.
To ensure that the NN will produce the expected function,
the strength of the connections within the network, called
connections weights, has to be determined. To achieve this
task, the neural network needs to be educated through a set
of examples, the so-called training cases. A training case
consists of presenting to the NN an input vector and the
associated expected output vector. In practice, we train the
system by iterative adjustment of the connection weights.
For this study, the standard back propagation learning
algorithm was used. This algorithm modifies the connection
weights to reduce the difference between the desired and the
actual output values of the network. To ensure that the NN
works also well on unseen data, classical techniques that
promote the generalization of the model were used such as
weight decay [Krogh and Hertz, 1992] and cross-validation
[Geisser, 1975].

3. Radiative Transfer Simulations

[6] The neural network was trained with simulated
Rrs(0�) spectra. About 10,000 spectra were simulated to
cover a large variety of optical coastal water conditions.
One half of these spectra were used for the training
phase, while the other half were used for the validation
of the algorithm. The simulations were performed using
the Ordre Sucessifs Ocean Atmosphere (OSOA) radiative
transfer model [Chami et al., 2001]. The OSOA model
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solves the vector radiative transfer equation for the coupled
atmosphere-ocean system using the successive orders of
scattering method. Given a set of IOP in the water column,
the OSOA model outputs the angular distribution of the
radiance field and its degree of polarization. The originality
of OSOA model, when comparing to other widely used
models such as Hydrolight, is to account for the polari-
zation state of light in the water mass. As a result, it was
not relevant in this study to use the synthetic data set
generated in the framework of the IOCCG working group
[International Ocean Colour Coordinating Group (IOCCG),
2006], which is based on Hydrolight simulations.
[7] We report here on the input parameters used in the

OSOA model. Standard atmosphere with tropospheric aero-
sols T70 [Shettle and Fenn, 1979] having an optical depth
of 0.2 at 555 nm (i.e., horizontal visibility of 23 km) was
used to simulate the incoming solar light. The solar zenith
angle was set up to 30� in air. The remote sensing reflec-
tance was simulated just beneath the surface for different
scattering angles, namely from 110� to 170�. We selected
this range of scattering angle to be consistent with the multi-
directional measurements of the satellite sensor Polarization
and Anisotropy of Reflectances for Atmospheric Sciences
Coupled with Observations From a Lidar (PARASOL)
(Centre National d’Etudes Spatiales (CNES)), which is the
only one that is currently able to measure the multi-
directional and polarized reflectance. Note that the nadir
remote sensing reflectance corresponds to a scattering angle
of 158�. The wavelengths used to compute the total Rrs (i.e.,
total means unpolarized) were 412, 443, 490, 510, 555, 620,
and 665 nm. The polarized Rrs was computed at 490 and 665
nm to match with the polarized channels of the PARASOL
satellite sensor.
[8] The IOP required for the simulation are the absorption

coefficients, the scattering coefficients, and the phase
function of the particles. For computation of the IOP, a
four-component seawater model is considered. The four
components are pure seawater, phytoplankton and their
covarying particles, colored dissolved organic matter
(CDOM), and noncovarying particles. In the notation for
IOP, these components are indicated by subscripts w, ph,
CDOM, and NC, respectively. In this water model, the total
absorption coefficient atot is the sum of contributions
from the four components. Since CDOM is supposed to
be nonscattering material, the total scattering coefficient btot
and backscattering coefficient bbtot are the sum of the three
following components: water, phytoplankton, and nonco-
varying particles.

3.1. Absorption and Scattering Optical Models

[9] The spectral data of aw were taken from Pope and
Fry [1997]. Spectral CDOM absorption was modeled as
Bricaud et al. [1981]:

aCDOM lð Þ ¼ aCDOMð443Þ exp �SCDOM l� 443ð Þ½ � ð2Þ

The spectral absorption of noncovarying particles was
modeled as in the study of Babin et al. [2003a] (equation (3)):

aNC lð Þ ¼ aNCð443Þ exp �SNCðl� 443Þ½ � ð3Þ

The spectral scattering coefficients of phytoplankton and
noncovarying particles were modeled as (equations (4)
and (5)):

bph lð Þ ¼ bph 443ð Þ l
443

� ��Sbph

ð4Þ

bNC lð Þ ¼ bNCð443Þ
l
443

� ��SbNC

ð5Þ

The spectral variation of the total particulate scattering
coefficient bp also follows a power law function with a
slope Sbp.
[10] The backscattering coefficient of each optical water

components was derived from the scattering coefficient and
the integration of the phase function in the backward hemi-
sphere. In coastal waters, the use of several phase functions
is required to account for the variability of the optical
properties of particles. In this study, the phase functions
of particles were computed using Mie theory and different
refractive indices for the phytoplankton and noncovarying
particles. The size distribution of the particles was modeled
as a Junge power law.

3.2. Selection of the Optical Parameters

[11] The part controlling the success of the simulations
and training of the NN is the consistency of the data set with
observations. In this study, the values of the optical para-
meters used in the IOP models were based on the measure-
ments of the inherent optical coefficients collected during
the Coastal Surveillance Through Observation of Ocean
Colour (COASTlOOC) experiment [Babin et al., 2003a,
2003b]. The COASTlOOC data, which were acquired in
many European coastal waters (387 data in total), are highly
appropriate inasmuch as they cover a wide variety of optical
conditions, ranging from CDOM-dominated waters (such
as the Baltic Sea) to mineral-dominated waters (such as
the English Channel). For each case of simulations, the
optical properties are randomly selected within a realistic
range of variations based on the COASTlOOC observa-
tions (Table 1). The vertical distribution of the water
constituents was taken to be homogeneous. The scattering
and absorption coefficients of each water component were
first randomly selected at the reference wavelength 443 nm.
Because the contributions of phytoplankton and non-
covarying particles to the total particle scattering coefficient
bp were unknown during the COASTlOOC experiment
(only bp was measured), we randomly selected a value of
bp(443). Then, the contribution of phytoplankton to the
total scattering coefficient (i.e., bph/bp) was drawn, thus
allowing the determination of bph and bNC. The phase
functions of the particles were computed using standard
ranges of variation for the refractive indices of phytoplank-
ton and noncovarying particles. The Junge exponent n was
considered as a variable parameter, while the particle
radius interval of the size distribution was fixed to [0.1–
200 mm]. The variations of the refractive indices and the
Junge exponent n mean that multidirectional effects of
particles are included in the computations, which is consis-
tent with the variability observed in the phase functions
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in coastal areas [Chami et al., 2005, 2006]. Such impor-
tant features are not necessarily accounted for in synthetic
data sets in which a single particle phase function is used
[Schiller and Doerffer, 1999; Gross et al., 2000]. Figure 1
shows some examples representing the variability over
the data set of the unpolarized and polarized phase func-
tions of the particles (i.e., terms M11 and M12 of the Mueller
matrix M). The phase functions are plotted for two values
of the refractive index, namely 1.05 and 1.20, and two
values of the Junge exponent, namely 3.5 and 4.5. To
highlight the polarization effects of the particles, the polar-

ized phase function is normalized to the unpolarized phase
function (i.e., the term M12/M11 is plotted in Figure 1b).
Figure 1a shows that, given a size distribution, highly
refractive particles exhibit backscattering efficiencies greater
than biogenic particles. The normalized polarized phase
functions show a minimum near a scattering angle of 90�
(Figure 1b). There are considerable differences in the height
of the minima, ranging from ��0.5 (mNC = 1.20, n = 3.5)
to ��0.95 (mph = 1.05, n = 4.5). Such a variability is
consistent with what has been found for phytoplankton
samples grown in the laboratory ([Volten et al., 1998];
minima between �0.25 and �0.85; [Quinby-Hunt et al.,
1989]; minima �0.8). Note that the lowest simulated
minima value compares well with the results found by
Volten et al. [1998] for inorganic silt particles (��0.4) and
for the species Emiliana huxleyi with coccoliths, thus
indicating that our simulations satisfactorily match obser-
vations at large refractive index. The simulated polarized
effects of the particles are also in agreement with what has
been found for natural ocean water samples ([Voss and
Fry, 1984]; minima between �0.6 and �0.8). Therefore
the polarization features of the particles that are taken into
account in the simulations are meaningful.
[12] The IOP values at other wavelengths than 443 nm

were determined by applying the abovementioned spectral
models using randomly selected spectral slopes, except for
the phytoplankton absorption coefficient aph(l). In the latter
case, the relationship that exists because of the packaging
effect between the spectral shape of phytoplankton absorp-
tion coefficient and the magnitude of aph(443) was taken
into account. The spectral shape of aph(l) was determined
by averaging the three absorption spectra taken in the
COASTlOOC database, for which the measured value of
aph(443) was the closest to the randomly selected value of
aph(443).

Table 1. Range of the Optical Properties Used for the Simulation

of the Subsurface Rrs That Were Used to Train the NNa

Optical Parameter Minimum Maximum

mph 1.05 1.10
mNC 1.15 1.20
SNC, nm

�1 0.007 0.015
SCDOM, nm

�1 0.011 0.020
Sbp, nm

�1 0 2
Sbchl, nm

�1 0 2
Sbsed, nm

�1 0 2
n 3 5
r, mm 0.1 200
aph, m

�1 6.12e�03 0.904
aNC, m

�1 2.05e�03 1.73
aCDOM, m

�1 0 1
bp, m

�1 0.076 21
bph, m

�1 0 21
bNC, m

�1 0 21
bbp, m

�1 2.4e�04 0.664
bbph, m

�1 0 0.40
bbNC, m

�1 0 0.70
aThe IOP are reported for the wavelength 443 nm. mph and mNC are the

refractive index of phytoplankton and noncovarying particles, respectively.
n is the Junge exponent of the size distribution, and r is the radius of the
size distribution.

Figure 1. Examples of particulate phase functions used in the data set: (a) phase function (i.e., term M11

of the Mueller matrix) and (b) polarized phase function normalized to the phase function (i.e., ratio M12/
M11). The phase functions are plotted for refractive indices values of 1.05 and 1.20 to be representative of
phytoplankton and noncovarying particles and for Junge exponent values of 3.5 and 4.5.
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[13] Despite the fact that each optical component is varied
randomly within an appropriate range, it is necessary to
account for optical constraints between IOP to exclude
unrealistic combinations of IOP, such as cases of high
absorption without any scattering. In our simulated data
set, covariations between scattering and absorption were
taken into account. The particle scattering coefficient bp was
not varied independently from the absorption coefficient of
noncovarying particles aNC and phytoplankton aph. Thus,
the minimum and maximum values of absorption coeffi-
cients of noncovarying particles and phytoplankton depend
on the particle scattering coefficient bp, which is sampled
first. The lower and upper limits of aNC and aph are
determined based on the COASTlOOC database as follows.

First, the entire range of variation of the logarithm of bp is
divided into 10 subranges. As a result, 10 clusters of each
couple [logbp, logaph] and [logbp, logaNC] are obtained.
Note that a logarithmic scaling is used because low values
prevail in the COASTlOOC measurements; such a scaling
thus allows accounting for the natural dispersion of the data.
Second, for each cluster, the mean value m and the standard
deviation s of the corresponding subset of logaph or logaNC
are computed. The upper and lower limits of aNC and aph
are then determined, adjusting a parameter a in the expres-
sions e(m+as) and e(m�as), respectively. Here the limits of
the domain of covariation between the particulate scattering
and absorption coefficients are obtained using a = 1.5.
Figure 2 shows the relations between bp and aNC and bp and

Figure 2. Covariations between (a) aph and bp and (b) aNC and bp at 443 nm as observed during the
COASTlOOC experiment. The covariation bounds were determined using the average values and the
standard deviations of the measurements (see text). Units of the x axis and y axis are m�1.
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aph as observed during the COASTlOOC experiment. The
upper and lower limits are centered on local mean values of
the measurements. The covariation bounds satisfactorily
encompass the majority of the data. The inclusion in the
simulated data set of observations, optical constraints, and
variability in the directional properties of the particles
makes it representative of coastal water conditions.

4. Architecture of the NN Algorithm

[14] The input layer of the feedforward multilayer percep-
tron is designed to receive one Rrs spectrum. To analyze the
influence of the directional and polarization effects on the
IOP retrieval, three configurations of the input layer were
studied. In the first configuration, the NN input layer
corresponds to the Rrs spectrum, considering the radiance
in the nadir direction only. Such a case is consistent with the
usual way of measuring the in situ Rrs and is thus referred
to as the standard configuration or case S. Since seven
wavelengths were used, the input layer thus contains seven
values in case S. In the second configuration, the sensitivity
of the algorithm to the multidirectionality of the Rrs is
tested. Therefore the input layer consists of the Rrs spec-
trum obtained for nine scattering angles, namely 110�, 120�,
125�, 130�, 135�, 140�, 150�, 158�, and 165�. Such a
configuration, hereafter referred to as case M, is consistent
with the characteristics of the PARASOL satellite sensor,
which is able to observe a scene under 9 to 12 directions. In
case M, the input layer contains 63 neurons. The third
configuration, hereafter referred to as case MP, is similar
as case M except the polarized Rrs at 490 and 665 nm
obtained in the nine previous directions is added to the input
layer. Therefore the input layer contains 81 neurons in case
MP.
[15] The output layer consists of the IOP to be retrieved,

namely atot, aph, aNC, aCDOM, btot, bph, bNC, bbtot, bbph, and
bbNC. Actually, several tests were performed and the best
results were obtained when each IOP is retrieved by
separated NN models. Therefore for each NN model, the
output layer only contains one neuron. One hidden layer
was used, and the optimal number of hidden neurons
(from 10 to 40) was determined experimentally for each
model.

5. Results

[16] The NN algorithm was applied on a simulated data
set (hereafter referred to as the validation set), though
simulated with OSOA radiative transfer model, which is
totally independent of the data used for training. Given the
uncertainty in the Rrs measurements, the simulated reflec-
tances are disturbed by adding 5% noise, which typically
corresponds to the radiometric performance of the commer-
cially available instruments. Normally distributed errors are
used here as a mean to disturb the Rrs in some reasonable
manner. To evaluate the performance of the NN models, the
relative root mean square (RRMS) error (equation (6)) was
calculated. The RRMS is defined as:

RRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

IOPiexpected � IOPiestimated

IOPiexpected

 !2
vuut ð6Þ

where n stands for the number of data, IOPestimated
i stands for

the ith property derived from Rrs(l) and IOPexpected
i for the

ith property known from simulation.

5.1. IOP Retrieval for Case S

[17] The IOP retrieval when the nadir-viewed subsurface
Rrs spectrum is used to feed the NN input layer (case S) was
studied first. Figure 3 shows the comparison between the
derived atot and bbtot at 555 nm and their corresponding
known values. Over the large dynamic range of the data set,
atot and bbtot are retrieved within ±7.4% and ±9.8%,
respectively (see Table 2). The agreement is evident as
shown by the high coefficient of determination (R2 = 0.96
and 0.98) and the slope close to 1.0 (0.96 and 1.0) for both
IOP. Similar results were obtained at other wavelengths.
Thus, the NN algorithm accurately retrieves those optical
properties which are key parameters to determine the remote
sensing reflectance (see equation (1)). However, the retrieval
of the total scattering coefficient btot is not as good as for
bbtot and atot (RRMS �49.3%, R2 = 0.84, and a slope value
of 0.87). A degradation of the performance was expected
because btot is a second-rate contributor to the Rrs signal
compared with the total absorption and backscattering
coefficients, which are explicitly related to the Rrs.
[18] When the total absorption is decomposed into the

components of CDOM, noncovarying particles, and phyto-
plankton, the dispersion of the data in the scatterplot is much
larger. As an example, Figures 4a and 4b show the retrieval of
aph and aNC at 555 nm. The RRMS values for aph(555)
(20.2%) and aNC(555) (18.3%) are nearly three times higher
than the error calculated for the total absorption coefficient
atot(555). Note that the performance of the model to retrieve
aph and aNC is more degraded at 443 compared with 555 nm,
with RRMS values of 34.3% and 35.4%, respectively. A high
dispersion is also observed regarding aCDOM retrieval (RRMS
�28.3% and R2 = 0.77 at 443 nm). A higher scatter was
expected in the blue because phytoplankton, noncovarying
particles, and dissolved organic matter exhibit overlapping
absorption spectra, making them difficult to separate.
[19] The separation of the total backscattering coefficient

into phytoplankton and noncovarying particles components
also leads to much higher errors of retrieval compared with
bbtot (Figures 4c and 4d). The RRMS values of bbph and
bbNC were 61.7% and 44.3% at 555 nm, which is about six
and five times higher than the RRMS calculated for bbtot.
Furthermore, the relationships significantly deviate from
linearity, mostly in the range of the high values of the
backscattering coefficients. The deviation from linearity of
the relationships is more critical for the phytoplankton
component for which the slope of the linear regression was
0.49 (0.85 for noncovarying particles) and the coefficient
of determination was much lower (see Table 2). Similar
results were obtained for the scattering coefficients bph and
bNC. Because noncovarying particles have higher refractive
indices and hence higher backscattering efficiencies than
phytoplankton cells, they mostly contribute to the varia-
tions of the Rrs, thus explaining the better accuracy in the
retrieval of their scattering properties.

5.2. Influence of the Multidirectionality and Polarization

[20] In this section, we evaluate the accuracy of the IOP
retrieval when the multidirectional (referred as case M) and
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retrieval of inherent optical properties of oceanic constitu-
ents in coastal waters were investigated. First, a neural
network inversion procedure was developed using a syn-
thetic data set. The data were simulated using a radiative
transfer model that accounts for the polarization state of
light in the ocean. The synthetic data set was also con-
strained by observations made in various representative
coastal waters. In particular, the covariations that exist
between the optical parameters were taken into account to
exclude unrealistic combinations of IOP. The data set also
included directional effects of marine particles through the
inclusion of a high variability in the particulate phase
function. It was demonstrated that the inversion algorithm

can be applied satisfactorily to retrieve the total absorption
and backscattering coefficients, which were the most robust
variables. However, the separation of the total IOP into
water components induced a significant degradation of the
performances of the algorithm. This was explained by the
fact that the inverse problem of ocean color is ill-posed;
different combinations of each IOP could lead to similar
reflectance spectra.

[29] The sensitivity of the algorithm to the directionality
and to the polarization effects was then studied. It should be
highlighted that this is the first time that the influence of
the directionality and the polarization properties of the
reflectance on the accuracy of the IOP retrieval is quanti-

Figure 8. Same as Figure 5 but for the retrieval of the following scattering coefficients: (a)bph: case M,
(b) bph: case MP, (c)bNC: case M, and (d)bNC: case MP.
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fied. Significant improvements were observed, especially
regarding the scattering and backscattering coefficients.
Typically, the inclusion of the directional variations of
the reflectance induced an increase of the accuracy of the
IOP retrieval from 15% to 60%. When the polarization was
taken into account, the improvement of the inversion was
much greater regarding the retrieval of the scattering
properties (�75%) while it was very small regarding the
retrieval of the absorption coefficients. Both the scattering
and backscattering coefficients of each water components
were correctly retrieved (within 25% for phytoplankton and
within 15% for noncovarying particles). Note that the
scattering coefficients were correctly derived despite these
IOP are second-rate contributors to the reflectance com-
pared with the backscattering coefficients. Therefore the
polarization is a robust physical constraint that can be used
to increase significantly the efficiency of the inversion
algorithms in coastal waters. A greater influence of the
polarization information is expected in mineral-dominated
waters where scattering processes prevail. Therefore the
derivation of biogeochemical parameters from IOP in these
optically complex waters should be significantly improved.
Our results are highly encouraging in the prospect of the
exploitation of the polarized data collected by the satellite
sensor PARASOL (CNES), which still remains to be
achieved. However, on the basis of this study, future efforts
should also be directed in the development of in situ
instrumentation able to measure the polarized reflectance
in many directions to better analyze and interpret the
variations of the ocean color in coastal waters.

Notation and Abbreviation

atot Total absorption coefficient (m�1)
aNC Absorption coefficient of noncovarying parti-

cles (m�1)
aph Absorption coefficient of phytoplankton (m�1)

aCDOM Absorption coefficient of colored dissolved
organic matter (m�1)

btot Total scattering coefficient (m�1)
bp Particulate scattering coefficient (m�1)

bNC Scattering coefficient of noncovarying parti-
cles (m�1)

bph Scattering coefficient of phytoplankton (m�1)
bbtot Total backscattering coefficient (m�1)
Bbp Particulate backscattering coefficient (m�1)

bbNC Backscattering coefficient of noncovarying
particles (m�1)

bbph Backscattering coefficient of phytoplankton
(m�1)

G Proportionality factor between the reflectance
and the ratio bbtot/atot

l Wavelength (nm)
mNC Refractive index of noncovarying particles
mph Refractive index of phytoplankton
n Junge exponent of the size distribution of the

particles
SCDOM Spectral slope of aCDOM (nm�1)

SNC Spectral slope of aNC (nm�1)
Sbp Spectral slope of bp (nm

�1)

Sbp Spectral slope of bph (nm
�1)

SbNC Spectral slope of bNC (nm�1)
0� Beneath the sea surface

Case S Standard configuration (nadir-viewed reflec-
tance is inverted)

Case M Multidirectional configuration (reflectances in
many directions are inverted)

Case MP Polarization configuration (total and polarized
reflectances in many directions are inverted)

CDOM Colored Dissolved Organic Matter
CNES Centre National d’Etudes Spatiales

IOCCG International Ocean Colour Coordinating Group
IOP Inherent optical properties
M Mueller matrix

M11 Unpolarized phase function
M12 Polarized phase function
NN Neural network

OSOA Ordre Sucessifs Ocean Atmosphere
PARASOL Polarization and Anisotropy of Reflectances

for Atmospheric Sciences Coupled with
Observations From a Lidar

R2 Coefficient of determination
RRMS Relative root mean square

Rrs Remote sensing reflectance
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